Nikhil Muralidhar

Calculated based on number of publications stored in Pure and citations from Scopus
20162025

Research activity per year

Fingerprint

Dive into the research topics where Nikhil Muralidhar is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
  • DenoMAE: A Multimodal Autoencoder for Denoising Modulation Signals

    Faysal, A., Boushine, T., Rostami, M., Roshan, R. G., Wang, H., Muralidhar, N., Sahoo, A. & Yao, Y. D., 2025, In: IEEE Communications Letters. 29, 7, p. 1659-1663 5 p.

    Research output: Contribution to journalArticlepeer-review

    1 Scopus citations
  • Comparative Study of Future State Predictions of Unsteady Multiphase Flows Using DMD and Deep Learning

    Raj, N. A., Tafti, D., Muralidhar, N. & Karpatne, A., 2024, Fluid Mechanics and Fluid Power, Volume 4 - Select Proceedings of FMFP 2022. Singh, K. M., Dutta, S., Subudhi, S. & Singh, N. K. (eds.). p. 923-935 13 p. (Lecture Notes in Mechanical Engineering).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Counter Data Paucity through Adversarial Invariance Encoding: A Case Study on Modeling Battery Thermal Runaway

    Tabassum, A., Allu, S., Kannan, R. & Muralidhar, N., 2024, Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024. Ding, W., Lu, C.-T., Wang, F., Di, L., Wu, K., Huan, J., Nambiar, R., Li, J., Ilievski, F., Baeza-Yates, R. & Hu, X. (eds.). p. 2224-2233 10 p. (Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Large Multi-Modal Models (LMMs) as Universal Foundation Models for AI-Native Wireless Systems

    Xu, S., Kurisummoottil Thomas, C., Hashash, O., Muralidhar, N., Saad, W. & Ramakrishnan, N., 2024, In: IEEE Network. 38, 5, p. 10-20 11 p.

    Research output: Contribution to journalArticlepeer-review

    18 Scopus citations
  • Laying Anchors: Semantically Priming Numerals in Language Modeling

    Sharma, M., Taware, R. M., Koirala, P., Muralidhar, N. & Ramakrishnan, N., 2024, Findings of the Association for Computational Linguistics: NAACL 2024 - Findings. Duh, K., Gomez, H. & Bethard, S. (eds.). p. 2653-2660 8 p. (Findings of the Association for Computational Linguistics: NAACL 2024 - Findings).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review