Nikhil Muralidhar

Calculated based on number of publications stored in Pure and citations from Scopus
20162024

Research activity per year

Search results

  • 2024

    Comparative Study of Future State Predictions of Unsteady Multiphase Flows Using DMD and Deep Learning

    Raj, N. A., Tafti, D., Muralidhar, N. & Karpatne, A., 2024, Fluid Mechanics and Fluid Power, Volume 4 - Select Proceedings of FMFP 2022. Singh, K. M., Dutta, S., Subudhi, S. & Singh, N. K. (eds.). p. 923-935 13 p. (Lecture Notes in Mechanical Engineering).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Large Multi-Modal Models (LMMs) as Universal Foundation Models for AI-Native Wireless Systems

    Xu, S., Kurisummoottil Thomas, C., Hashash, O., Muralidhar, N., Saad, W. & Ramakrishnan, N., 2024, In: IEEE Network. 38, 5, p. 10-20 11 p.

    Research output: Contribution to journalArticlepeer-review

    Open Access
    2 Scopus citations
  • Laying Anchors: Semantically Priming Numerals in Language Modeling

    Sharma, M., Taware, R. M., Koirala, P., Muralidhar, N. & Ramakrishnan, N., 2024, Findings of the Association for Computational Linguistics: NAACL 2024 - Findings. Duh, K., Gomez, H. & Bethard, S. (eds.). p. 2653-2660 8 p. (Findings of the Association for Computational Linguistics: NAACL 2024 - Findings).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • NMformer: A Transformer for Noisy Modulation Classification in Wireless Communication

    Faysal, A., Rostami, M., Roshan, R. G., Wang, H. & Muralidhar, N., 2024, 2024 33rd Wireless and Optical Communications Conference, WOCC 2024. p. 103-108 6 p. (2024 33rd Wireless and Optical Communications Conference, WOCC 2024).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Physics informed deep learning for flow and force predictions in dense ellipsoidal particle suspensions

    Ashwin, N. R., Tafti, D., Muralidhar, N. & Cao, Z., 15 Apr 2024, In: Powder Technology. 439, 119684.

    Research output: Contribution to journalArticlepeer-review

    2 Scopus citations
  • Reinforcement Learning as a Parsimonious Alternative to Prediction Cascades: A Case Study on Image Segmentation

    Srikishan, B., Tabassum, A., Allu, S., Kannan, R. & Muralidhar, N., 25 Mar 2024, In: Proceedings of the AAAI Conference on Artificial Intelligence. 38, 13, p. 15066-15074 9 p.

    Research output: Contribution to journalConference articlepeer-review

    Open Access
    1 Scopus citations
  • Title evaluation of FluSight influenza forecasting in the 2021–22 and 2022–23 seasons with a new target laboratory-confirmed influenza hospitalizations

    Mathis, S. M., Webber, A. E., León, T. M., Murray, E. L., Sun, M., White, L. A., Brooks, L. C., Green, A., Hu, A. J., Rosenfeld, R., Shemetov, D., Tibshirani, R. J., McDonald, D. J., Kandula, S., Pei, S., Yaari, R., Yamana, T. K., Shaman, J., Agarwal, P. & Balusu, S. & 90 others, Gururajan, G., Kamarthi, H., Prakash, B. A., Raman, R., Zhao, Z., Rodríguez, A., Meiyappan, A., Omar, S., Baccam, P., Gurung, H. L., Suchoski, B. T., Stage, S. A., Ajelli, M., Kummer, A. G., Litvinova, M., Ventura, P. C., Wadsworth, S., Niemi, J., Carcelen, E., Hill, A. L., Loo, S. L., McKee, C. D., Sato, K., Smith, C., Truelove, S., Jung, S. M., Lemaitre, J. C., Lessler, J., McAndrew, T., Ye, W., Bosse, N., Hlavacek, W. S., Lin, Y. T., Mallela, A., Gibson, G. C., Chen, Y., Lamm, S. M., Lee, J., Posner, R. G., Perofsky, A. C., Viboud, C., Clemente, L., Lu, F., Meyer, A. G., Santillana, M., Chinazzi, M., Davis, J. T., Mu, K., Pastore y Piontti, A., Vespignani, A., Xiong, X., Ben-Nun, M., Riley, P., Turtle, J., Hulme-Lowe, C., Jessa, S., Nagraj, V. P., Turner, S. D., Williams, D., Basu, A., Drake, J. M., Fox, S. J., Suez, E., Cojocaru, M. G., Thommes, E. W., Cramer, E. Y., Gerding, A., Stark, A., Ray, E. L., Reich, N. G., Shandross, L., Wattanachit, N., Wang, Y., Zorn, M. W., Aawar, M. A., Srivastava, A., Meyers, L. A., Adiga, A., Hurt, B., Kaur, G., Lewis, B. L., Marathe, M., Venkatramanan, S., Butler, P., Farabow, A., Ramakrishnan, N., Muralidhar, N., Reed, C., Biggerstaff, M. & Borchering, R. K., Dec 2024, In: Nature Communications. 15, 1, 6289.

    Research output: Contribution to journalArticlepeer-review

    Open Access
    7 Scopus citations
  • 2023

    Comparison of reduced order models based on dynamic mode decomposition and deep learning for predicting chaotic flow in a random arrangement of cylinders

    Raj, N. A., Tafti, D. & Muralidhar, N., 1 Jul 2023, In: Physics of Fluids. 35, 7, 073330.

    Research output: Contribution to journalArticlepeer-review

    6 Scopus citations
  • Learning Non-linguistic Skills without Sacrificing Linguistic Proficiency

    Sharma, M., Muralidhar, N. & Ramakrishnan, N., 2023, Long Papers. p. 6178-6191 14 p. (Proceedings of the Annual Meeting of the Association for Computational Linguistics; vol. 1).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Scopus citations
  • ML-Assisted Optimization of Securities Lending

    Prasad, A., Arunachalam, P., Motamedi, A., Bhattacharya, R., Liu, B., McCormick, H., Xu, S., Muralidhar, N. & Ramakrishnan, N., 27 Nov 2023, ICAIF 2023 - 4th ACM International Conference on AI in Finance. p. 628-636 9 p. (ICAIF 2023 - 4th ACM International Conference on AI in Finance).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2022

    Deep learning methods for predicting fluid forces in dense particle suspensions

    Ashwin, N. R., Cao, Z., Muralidhar, N., Tafti, D. & Karpatne, A., Mar 2022, In: Powder Technology. 401, 117303.

    Research output: Contribution to journalArticlepeer-review

    Open Access
    18 Scopus citations
  • Detecting Irregular Network Activity with Adversarial Learning and Expert Feedback

    Rathinavel, G., Muralidhar, N., O'Shea, T. & Ramakrishnan, N., 2022, Proceedings - 22nd IEEE International Conference on Data Mining, ICDM 2022. Zhu, X., Ranka, S., Thai, M. T., Washio, T. & Wu, X. (eds.). p. 1161-1166 6 p. (Proceedings - IEEE International Conference on Data Mining, ICDM; vol. 2022-November).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    1 Scopus citations
  • Efficient Generative Wireless Anomaly Detection for Next Generation Networks

    Rathinavel, G., Muralidhar, N., Ramakrishnan, N. & Oshea, T., 2022, MILCOM 2022 - 2022 IEEE Military Communications Conference. p. 594-599 6 p. (Proceedings - IEEE Military Communications Conference MILCOM; vol. 2022-November).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    2 Scopus citations
  • MatPhase: Material phase prediction for Li-ion Battery Reconstruction using Hierarchical Curriculum Learning

    Tabassum, A., Muralidhar, N., Kannan, R. & Allu, S., 2022, Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022. Tsumoto, S., Ohsawa, Y., Chen, L., Van den Poel, D., Hu, X., Motomura, Y., Takagi, T., Wu, L., Xie, Y., Abe, A. & Raghavan, V. (eds.). p. 1936-1941 6 p. (Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    2 Scopus citations
  • 2021

    Contrastive Graph Convolutional Networks for Hardware Trojan Detection in Third Party IP Cores

    Muralidhar, N., Zubair, A., Weidler, N., Gerdes, R. & Ramakrishnan, N., 2021, Proceedings of the 2021 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2021. p. 181-191 11 p. (Proceedings of the 2021 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2021).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    26 Scopus citations
  • PhyFlow: Physics-Guided Deep Learning for Generating Interpretable 3D Flow Fields

    Muralidhar, N., Bu, J., Cao, Z., Raj, N., Ramakrishnan, N., Tafti, D. & Karpatne, A., 2021, Proceedings - 21st IEEE International Conference on Data Mining, ICDM 2021. Bailey, J., Miettinen, P., Koh, Y. S., Tao, D. & Wu, X. (eds.). p. 1246-1251 6 p. (Proceedings - IEEE International Conference on Data Mining, ICDM; vol. 2021-December).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    5 Scopus citations
  • Steering a Historical Disease Forecasting Model Under a Pandemic: Case of Flu and COVID-19

    Rodríguez, A., Muralidhar, N., Adhikari, B., Tabassum, A., Ramakrishnan, N. & Prakash, B. A., 2021, 35th AAAI Conference on Artificial Intelligence, AAAI 2021. p. 4855-4863 9 p. (35th AAAI Conference on Artificial Intelligence, AAAI 2021; vol. 6A).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    16 Scopus citations
  • 2020

    Cut-n-Reveal: Time Series Segmentations with Explanations

    Muralidhar, N., Tabassum, A., Chen, L., Chinthavali, S., Ramakrishnan, N. & Prakash, B. A., Sep 2020, In: ACM Transactions on Intelligent Systems and Technology. 11, 5, 53.

    Research output: Contribution to journalArticlepeer-review

    3 Scopus citations
  • Phynet: Physics guided neural networks for particle drag force prediction in assembly

    Muralidhar, N., Bu, J., Cao, Z., He, L., Ramakrishnan, N., Tafti, D. & Karpatne, A., 2020, Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020. Demeniconi, C. & Chawla, N. (eds.). p. 559-567 9 p. (Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    38 Scopus citations
  • Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems

    Muralidhar, N., Bu, J., Cao, Z., He, L., Ramakrishnan, N., Tafti, D. & Karpatne, A., 1 Oct 2020, In: Big Data. 8, 5, p. 431-449 19 p.

    Research output: Contribution to journalArticlepeer-review

    Open Access
    36 Scopus citations
  • 2019

    Detection of false data injection attacks in cyber-physical systems using dynamic invariants

    Nakayama, K., Muralidhar, N., Jin, C. & Sharma, R., Dec 2019, Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019. Wani, M. A., Khoshgoftaar, T. M., Wang, D., Wang, H. & Seliya, N. (eds.). p. 1023-1030 8 p. 8999069. (Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    2 Scopus citations
  • Dyat nets: Dynamic attention networks for state forecasting in cyber-physical systems

    Muralidhar, N., Muthiah, S. & Ramakrishnan, N., 2019, Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019. Kraus, S. (ed.). p. 3180-3186 7 p. (IJCAI International Joint Conference on Artificial Intelligence; vol. 2019-August).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    17 Scopus citations
  • Multivariate Long-Term State Forecasting in Cyber-Physical Systems: A Sequence to Sequence Approach

    Muralidhar, N., Muthiah, S., Nakayama, K., Sharma, R. & Ramakrishnan, N., Dec 2019, Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019. Baru, C., Huan, J., Khan, L., Hu, X. T., Ak, R., Tian, Y., Barga, R., Zaniolo, C., Lee, K. & Ye, Y. F. (eds.). p. 543-552 10 p. 9005511. (Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    8 Scopus citations
  • 2018

    Illiad: InteLLigent invariant and anomaly detection in cyber-physical systems

    Muralidhar, N., Wang, C., Self, N., Momtazpour, M., Nakayama, K., Sharma, R. & Ramakrishnan, N., Feb 2018, In: ACM Transactions on Intelligent Systems and Technology. 9, 3, 35.

    Research output: Contribution to journalArticlepeer-review

    15 Scopus citations
  • Incorporating Prior Domain Knowledge into Deep Neural Networks

    Muralidhar, N., Islam, M. R., Marwah, M., Karpatne, A. & Ramakrishnan, N., 2 Jul 2018, Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. Abe, N., Liu, H., Pu, C., Hu, X., Ahmed, N., Qiao, M., Song, Y., Kossmann, D., Liu, B., Lee, K., Tang, J., He, J. & Saltz, J. (eds.). p. 36-45 10 p. 8621955. (Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    125 Scopus citations
  • 2016

    Recommending temporally relevant news content from implicit feedback data

    Muralidhar, N., Rangwala, H. & Han, E. H. S., 4 Jan 2016, Proceedings - 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, ICTAI 2015. p. 689-696 8 p. 7372200. (Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI; vol. 2016-January).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    8 Scopus citations