Project Details
Description
The proposed work will generate the required fundamental and technological knowledge for applying the millimeter-wave technology to biomedical imaging applications. Despite the various advantages of this low-cost technology in a biomedical imaging context including high image contrasts and suitable penetration depths, it has not been applied to any such application. The main reason is its limitation in providing sufficient resolutions for diagnostic purposes. This proposal offers a novel approach by which an ultra-wide imaging bandwidth that cannot be realized by any conventional design method is assembled synthetically. This will improve image resolutions to values previously unattained. The main focus of this proposal is the development of a portable and low-cost skin imaging device that can image tissue layers over their depths with high resolutions while offering satisfactory contrasts between malignant and normal tissues. By diagnosing skin tumors at an early stage, the device will save tremendous amounts of time, effort, and patient discomfort and provide significant cost reductions for both the individual patient and the nation's healthcare system. The proposed research will be combined with various educational and outreach efforts aimed at involving graduate, undergraduate, and high school students in the proposed research and raising their interests in bio-electromagnetics and bio-medical imaging. The PI will specifically pursue the following main goals: 1) engaging high school students through the Liberty Science Center's 'Partners in Science' program, 2) recruiting undergraduate students, especially from female and minority groups, through the Summer Scholars Research Program at Stevens Institute and motivating them to continue towards graduate studies, 3) participating in the events and seminars organized by the Center for Healthcare Innovation at Stevens, 4) establishing a course on biomedical applications of electromagnetics at Stevens, and 5) disseminating the results of the research at professional conferences and technical journals.
'Synthetic' ultra-wideband millimeter-wave imaging, a novel approach in which an ultra-wide imaging bandwidth will be explored. This cannot be realized by any conventional design method and is therefore assembled 'synthetically', resulting in significant improvements in the resolution of acquired images. The synthetic increase is achieved by dividing the desired bandwidth into a number of adjacent sub-bands or channels. Each channel contains an antenna unit which is optimized for operation within that specific sub-band. The sub-band antennas are successively placed in front of the target, transmit their signals, and record the backscattered responses. The responses are then processed and combined to synthesize an integrated signal as if it were collected from a virtual equivalent ultra-wideband antenna. By using this concept, the challenges of realizing high-performance ultra-wideband antennas in the millimeter-wave regime are alleviated as each antenna is optimized within a limited bandwidth. An imaging system will be developed based on this approach for the detection of skin tumors in ex-vivo tissue measurements. The system will be optimized and miniaturized through developing a new class of wideband, miniaturized patch antennas for use in multi-static sensor arrays. The final imaging setup will be readily applicable to point-of-care and hand-held imaging devices. The
'synthetic' ultra-wideband imaging approach will lead to image resolutions which are unachievable using conventional imaging methods. The approach is versatile, as the number and position of the channels can be adjusted to cover any frequency range as required for the specific application. These capabilities bring a whole new level of functionality to millimeter-wave imaging systems and enable applications that are not currently feasible. Furthermore, the new class of wideband, miniaturized patch antennas which will be developed for the miniaturization and optimization of the final imagining setup will be highly desirable for a variety of communication and imaging applications in the millimeter-wave regime.
Status | Finished |
---|---|
Effective start/end date | 1/02/16 → 31/07/21 |
Funding
- National Science Foundation