Project Details
Description
Tissue engineering is a thought-provoking concept made compelling by the need to replace failed, damaged, or defective body parts. Unlike the more mature field of traditional medical-device development (e.g., joint replacement), tissue engineering is young and evolving. This project can thus change the established tissue-engineering paradigm to not only address the development of healthy tissue (associated with healing) but simultaneously address the need to inhibit bacterial colonization (associated with infection). A convergent team of researchers with expertise in microbiology, polymer science, biomaterials science, computational chemistry, veterinary medicine, and medical-device development will develop a new and flexible approach to infection control within a resorbable scaffold for tissue engineering. The research plan encorporates three synergistic research thrusts which will converge around a specific testbed, namely a new scaffold designed to regrow hard tissue that simultaneously resists bacterial colonization. To mimic the extracellular matrix, Thrust 1 will exploit 3D printing to additively create fiber-based scaffolds with controllable fiber size/spacing using combinations of resorbable polymers together with signaling factors to influence stem-cell differentiation. Thrust 2, using synergistic computational and experimental approaches, will explore fundamental concepts of polyelectrolyte complexation and directed self-assembly to render these scaffolds self-defensive (able to release antimicrobials only if, when, and where there is a bacterial challenge). Thrust 3 will employ lab-on-a-chip concepts to understand the competition between mammalian cells and bacteria and, in Phase 2 of project, include small-animal infection models able to recapitulate a complex physiological response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Status | Active |
---|---|
Effective start/end date | 1/10/22 → 30/09/27 |
Funding
- National Science Foundation
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.