A 16Gb/s 14.7mW tri-band cognitive serial link transmitter with forwarded clock to enable PAM-16 / 256-QAM and channel response detection in 28 nm CMOS

Yuan Du, Wei Han Cho, Yilei Li, Chien Heng Wong, Jieqiong Du, Po Tsang Huang, Yanghyo Kim, Zuow Zun Chen, Sheau Jiung Lee, Mau Chung Frank Chang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

A cognitive tri-band transmitter with forwarded clock using multi-band signaling and high-level digital signal modulations is presented for serial link application. The transmitter features learning an arbitrary channel response by sending a sweep of continuous wave, detecting power level, and accordingly adapts modulation scheme, data bandwidth and carrier frequency. The modulation scheme ranges from NRZ/QPSK to PAM-16/256-QAM. The highly re-configurable transmitter is capable of dealing with low-cost serial link cables/connectors or multi-drop buses with deep and narrow notches in frequency domain (e.g. 40dB loss at notches). The adaptive multi-band scheme mitigates equalization requirement and enhances the energy efficiency by avoiding frequency notches and utilizing the maximum available signal-to-noise ratio and channel bandwidth. The implemented transmitter consumes 14.7mW power and occupies 0.016mm2 in 28nm CMOS. It achieves a maximum data rate of 16Gb/s per differential pair and the most energy-efficient FoM (defined in Fig. 8) of 20.4 μW/Gb/s/dB considering channel condition.

Original languageEnglish
Title of host publication2016 IEEE Symposium on VLSI Circuits, VLSI Circuits 2016
ISBN (Electronic)9781509006342
DOIs
StatePublished - 21 Sep 2016
Event30th IEEE Symposium on VLSI Circuits, VLSI Circuits 2016 - Honolulu, United States
Duration: 14 Jun 201617 Jun 2016

Publication series

NameIEEE Symposium on VLSI Circuits, Digest of Technical Papers
Volume2016-September

Conference

Conference30th IEEE Symposium on VLSI Circuits, VLSI Circuits 2016
Country/TerritoryUnited States
CityHonolulu
Period14/06/1617/06/16

Fingerprint

Dive into the research topics of 'A 16Gb/s 14.7mW tri-band cognitive serial link transmitter with forwarded clock to enable PAM-16 / 256-QAM and channel response detection in 28 nm CMOS'. Together they form a unique fingerprint.

Cite this