A Continuous Occlusion Model for Road Scene Understanding

Vikas Dhiman, Quoc Huy Tran, Jason J. Corso, Manmohan Chandraker

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

28 Scopus citations

Abstract

We present a physically interpretable, continuous threedimensional (3D) model for handling occlusions with applications to road scene understanding. We probabilistically assign each point in space to an object with a theoretical modeling of the reflection and transmission probabilities for the corresponding camera ray. Our modeling is unified in handling occlusions across a variety of scenarios, such as associating structure from motion (SFM) point tracks with potentially occluding objects or modeling object detection scores in applications such as 3D localization. For point track association, our model uniformly handles static and dynamic objects, which is an advantage over motion segmentation approaches traditionally used in multibody SFM. Detailed experiments on the KITTI raw dataset show the superiority of the proposed method over both state-of-the-art motion segmentation and a baseline that heuristically uses detection bounding boxes for resolving occlusions. We also demonstrate how our continuous occlusion model may be applied to the task of 3D localization in road scenes.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Pages4331-4339
Number of pages9
ISBN (Electronic)9781467388504
DOIs
StatePublished - 9 Dec 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: 26 Jun 20161 Jul 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period26/06/161/07/16

Fingerprint

Dive into the research topics of 'A Continuous Occlusion Model for Road Scene Understanding'. Together they form a unique fingerprint.

Cite this