A latent clothing attribute approach for human pose estimation

Weipeng Zhang, Jie Shen, Guangcan Liu, Yong Yu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

As a fundamental technique that concerns several vision tasks such as image parsing, action recognition and clothing retrieval, human pose estimation (HPE) has been extensively investigated in recent years. To achieve accurate and reliable estimation of the human pose, it is well-recognized that the clothing attributes are useful and should be utilized properly. Most previous approaches, however, require to manually annotate the clothing attributes and are therefore very costly. In this paper, we shall propose and explore a latent clothing attribute approach for HPE. Unlike previous approaches, our approach models the clothing attributes as latent variables and thus requires no explicit labeling for the clothing attributes. The inference of the latent variables are accomplished by utilizing the framework of latent structured support vector machines (LSSVM). We employ the strategy of alternating direction to train the LSSVM model: In each iteration, one kind of variables (e.g., human pose or clothing attribute) are fixed and the others are optimized. Our extensive experiments on two real-world benchmarks show the state-of-the-art performance of our proposed approach.

Original languageEnglish
Title of host publicationComputer Vision - ACCV 2014 - 12th Asian Conference on Computer Vision, Revised Selected Papers
EditorsIan Reid, Ming-Hsuan Yang, Hideo Saito, Daniel Cremers
Pages146-161
Number of pages16
ISBN (Electronic)9783319168647
DOIs
StatePublished - 2015
Event12th Asian Conference on Computer Vision, ACCV 2014 - Singapore, Singapore
Duration: 1 Nov 20145 Nov 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9003
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th Asian Conference on Computer Vision, ACCV 2014
Country/TerritorySingapore
CitySingapore
Period1/11/145/11/14

Fingerprint

Dive into the research topics of 'A latent clothing attribute approach for human pose estimation'. Together they form a unique fingerprint.

Cite this