TY - GEN
T1 - A novel perspective in the design of cable-driven systems
AU - Rosati, Giulio
AU - Zanotto, Damiano
PY - 2009
Y1 - 2009
N2 - This paper deals with a novel approach to the design of cable-driven systems. This kind of robots possesses several desirable features that distinguish them from common manipulators, such as: low-inertia, cost-effectiveness, safety, easy reconfiguration and transportability. One key-issue that arises from the unilateral actuation is the design for workspace optimization. Most previous researches on cable-driven systems design focused their attention on workspace analysis for existing devices. Conversely, we introduce a new approach for improving workspace by design, introducing movable pulley-blocks rather than increasing the number of cables. By properly moving the pulley-blocks, the end-effector can be always maintained in the best part of the working space, thus enhancing robot capabilities without the need for additional cables. Furthermore, the eventuality of cable interference is strongly reduced. In this paper, the novel design concept is applied to different planar point-mass cable-driven robots, with one or more translating pulley-blocks. The maximum feasible isotropic force, along with the power dissipation and the effective mass at the end-effector are employed to compare the performances of different configurations.
AB - This paper deals with a novel approach to the design of cable-driven systems. This kind of robots possesses several desirable features that distinguish them from common manipulators, such as: low-inertia, cost-effectiveness, safety, easy reconfiguration and transportability. One key-issue that arises from the unilateral actuation is the design for workspace optimization. Most previous researches on cable-driven systems design focused their attention on workspace analysis for existing devices. Conversely, we introduce a new approach for improving workspace by design, introducing movable pulley-blocks rather than increasing the number of cables. By properly moving the pulley-blocks, the end-effector can be always maintained in the best part of the working space, thus enhancing robot capabilities without the need for additional cables. Furthermore, the eventuality of cable interference is strongly reduced. In this paper, the novel design concept is applied to different planar point-mass cable-driven robots, with one or more translating pulley-blocks. The maximum feasible isotropic force, along with the power dissipation and the effective mass at the end-effector are employed to compare the performances of different configurations.
UR - http://www.scopus.com/inward/record.url?scp=69949166675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69949166675&partnerID=8YFLogxK
U2 - 10.1115/IMECE2008-67272
DO - 10.1115/IMECE2008-67272
M3 - Conference contribution
AN - SCOPUS:69949166675
SN - 9780791848739
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 617
EP - 625
BT - 2008 Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
T2 - 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Y2 - 31 October 2008 through 6 November 2008
ER -