A paradox of decreasing entropy in multiscale Monte Carlo grain growth simulations

Michael Nosonovsky, Sven K. Esche

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Grain growth in metals is driven by random thermal fluctuations and increases the orderliness of the system. This random process is usually simulated by the Monte Carlo (MC) method and Cellular Automata (CA). The increasing orderliness results in an entropy decrease, thus leading to a paradoxical apparent violation of the second law of thermodynamics. In this paper, it is shown that treating the system as a multiscale system resolves this paradox. MC/CA simulations usually take into consideration only the mesoscale entropy. Therefore, the information entropy of the system decreases, leading to an apparent paradox. However, in the physical system, the entropy is produced at the nanoscale while it is consumed at the mesoscale, so that the net entropy is growing.

Original languageEnglish
Pages (from-to)49-54
Number of pages6
JournalEntropy
Volume10
Issue number2
DOIs
StatePublished - Jun 2008

Keywords

  • Cellular automata
  • Grain growth
  • Monte carlo simulation
  • Multiscale modeling

Fingerprint

Dive into the research topics of 'A paradox of decreasing entropy in multiscale Monte Carlo grain growth simulations'. Together they form a unique fingerprint.

Cite this