TY - JOUR
T1 - A selective-relay based cooperative spectrum sensing scheme without dedicated reporting channels in cognitive radio networks
AU - Zou, Yulong
AU - Yao, Yu Dong
AU - Zheng, Baoyu
PY - 2011/4
Y1 - 2011/4
N2 - Typically, each cooperative spectrum sensing process requires two phases: the primary user's signal detection phase, in which all cognitive users attempt to detect the presence of the primary user within a certain observation window (called signal detection overhead); and the initial detection result reporting phase, in which the cognitive users forward their detection results to a fusion center. To avoid interfering with the primary user in the reporting phase, previous research assumed that there is a common control channel (also known as dedicated reporting channel) between the cognitive users and fusion center, which, however, requires extra channel resources and introduces an additional complexity due to the dedicated channel resource management. In this paper, we propose a selective-relay based cooperative spectrum sensing scheme, which is able to control and reduce the interference from cognitive reporting users to primary user without the dedicated channel. We analyze the interference impact on the primary user and show that the interference induced by the reporting users is controllable and can be reduced to satisfy a given outage probability requirement of the primary transmissions. In addition, we investigate the receiver operating characteristics (ROC) of the traditional cooperative sensing scheme (with dedicated reporting channel) and the proposed scheme (without dedicated reporting channel) by jointly considering the signal detection and reporting phases. It is proven that, given a target detection probability, a unique optimal signal detection overhead exists to minimize an asymptotic overall false alarm probability in high SNR regions. We illustrate that, compared to the traditional scheme, the selective-relay based cooperative sensing scheme can save the dedicated channel resources without sacrificing ROC performance. Numerical results also show that, under a guaranteed overall detection probability, an overall false alarm probability can be minimized through an optimization of the signal detection overhead.
AB - Typically, each cooperative spectrum sensing process requires two phases: the primary user's signal detection phase, in which all cognitive users attempt to detect the presence of the primary user within a certain observation window (called signal detection overhead); and the initial detection result reporting phase, in which the cognitive users forward their detection results to a fusion center. To avoid interfering with the primary user in the reporting phase, previous research assumed that there is a common control channel (also known as dedicated reporting channel) between the cognitive users and fusion center, which, however, requires extra channel resources and introduces an additional complexity due to the dedicated channel resource management. In this paper, we propose a selective-relay based cooperative spectrum sensing scheme, which is able to control and reduce the interference from cognitive reporting users to primary user without the dedicated channel. We analyze the interference impact on the primary user and show that the interference induced by the reporting users is controllable and can be reduced to satisfy a given outage probability requirement of the primary transmissions. In addition, we investigate the receiver operating characteristics (ROC) of the traditional cooperative sensing scheme (with dedicated reporting channel) and the proposed scheme (without dedicated reporting channel) by jointly considering the signal detection and reporting phases. It is proven that, given a target detection probability, a unique optimal signal detection overhead exists to minimize an asymptotic overall false alarm probability in high SNR regions. We illustrate that, compared to the traditional scheme, the selective-relay based cooperative sensing scheme can save the dedicated channel resources without sacrificing ROC performance. Numerical results also show that, under a guaranteed overall detection probability, an overall false alarm probability can be minimized through an optimization of the signal detection overhead.
KW - Cognitive radio
KW - cooperative spectrum sensing
KW - data fusion
KW - receiver operating characteristics
UR - http://www.scopus.com/inward/record.url?scp=79955471355&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955471355&partnerID=8YFLogxK
U2 - 10.1109/TWC.2011.021611.100913
DO - 10.1109/TWC.2011.021611.100913
M3 - Article
AN - SCOPUS:79955471355
SN - 1536-1276
VL - 10
SP - 1188
EP - 1198
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 4
M1 - 5719531
ER -