TY - JOUR
T1 - Albumin-Coated Polycaprolactone (PCL)-Decellularized Extracellular Matrix (dECM) Scaffold for Bone Regeneration
AU - Junka, Radoslaw
AU - Zhou, Xiaqing
AU - Wang, Weiwei
AU - Yu, Xiaojun
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/12/19
Y1 - 2022/12/19
N2 - With the emphasis on collagen and hydroxyapatite, the main structural components of bone tissue, synthetic grafts fall short of matching the clinical efficacy of autologous bone grafts. Excluded non-collagenous protein (NCPs) and carbohydrates also participate in critical cell signaling cascades and guide mineral deposition during intermediate stages of bone healing. By mimicking the native fracture repair process, polymeric scaffolds that incorporate calcium-binding moieties present in fibrocartilage can potentially enhance their bioactivity, mineralization, and bone growth. Likewise, coating polymeric fibers with serum albumin is an additional strategy that can impart collagen-like biofunctionality and further increase mineral deposition on the fibrous surface. Here, a combination of electrospun polycaprolactone (PCL) fibers with chondrocyte-derived decellularized extracellular matrix (dECM) and albumin coating were investigated as a fibrocartilage-mimetic scaffold that can serve as a woven bone precursor for bone regeneration. PCL fibrous constructs coated with dECM and albumin are shown to synergistically increase calcium concentration and calcium phosphate (CaP) deposition in a simulated body fluid biomineralization assay. Albumin/dECM coating increased osteoblast proliferation and mineral deposition in culture. In contrast, CaP coating transformed osteoblast bone lining morphology into cuboidal phenotype and arrested their proliferation. Cell sheets of osteoblasts cultured on dECM/albumin/CaP-coated constructs exhibited an increase in calcium deposition and secretion of collagen, osteopontin, osteocalcin, and bone morphogenetic protein. These results highlight the potential of biomolecular coatings to enhance bone-mimetic properties of synthetic nanofibrous scaffolds, stimulate critical protein and mineral deposition, and augment the bone's capacity to heal. Thus, mimicking the intermediate stages of bone regeneration by incorporating calcium-binding moieties may prove to be a useful strategy for improving the clinical outcomes of synthetic bone grafts. copy; 2022 American Chemical Society.
AB - With the emphasis on collagen and hydroxyapatite, the main structural components of bone tissue, synthetic grafts fall short of matching the clinical efficacy of autologous bone grafts. Excluded non-collagenous protein (NCPs) and carbohydrates also participate in critical cell signaling cascades and guide mineral deposition during intermediate stages of bone healing. By mimicking the native fracture repair process, polymeric scaffolds that incorporate calcium-binding moieties present in fibrocartilage can potentially enhance their bioactivity, mineralization, and bone growth. Likewise, coating polymeric fibers with serum albumin is an additional strategy that can impart collagen-like biofunctionality and further increase mineral deposition on the fibrous surface. Here, a combination of electrospun polycaprolactone (PCL) fibers with chondrocyte-derived decellularized extracellular matrix (dECM) and albumin coating were investigated as a fibrocartilage-mimetic scaffold that can serve as a woven bone precursor for bone regeneration. PCL fibrous constructs coated with dECM and albumin are shown to synergistically increase calcium concentration and calcium phosphate (CaP) deposition in a simulated body fluid biomineralization assay. Albumin/dECM coating increased osteoblast proliferation and mineral deposition in culture. In contrast, CaP coating transformed osteoblast bone lining morphology into cuboidal phenotype and arrested their proliferation. Cell sheets of osteoblasts cultured on dECM/albumin/CaP-coated constructs exhibited an increase in calcium deposition and secretion of collagen, osteopontin, osteocalcin, and bone morphogenetic protein. These results highlight the potential of biomolecular coatings to enhance bone-mimetic properties of synthetic nanofibrous scaffolds, stimulate critical protein and mineral deposition, and augment the bone's capacity to heal. Thus, mimicking the intermediate stages of bone regeneration by incorporating calcium-binding moieties may prove to be a useful strategy for improving the clinical outcomes of synthetic bone grafts. copy; 2022 American Chemical Society.
KW - Albumin
KW - Biofabrication
KW - Bone regeneration
KW - Decellularized extracellular matrix
KW - Scaffold
UR - http://www.scopus.com/inward/record.url?scp=85142165039&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142165039&partnerID=8YFLogxK
U2 - 10.1021/acsabm.2c00686
DO - 10.1021/acsabm.2c00686
M3 - Article
C2 - 36374246
AN - SCOPUS:85142165039
VL - 5
SP - 5634
EP - 5644
JO - ACS Applied Bio Materials
JF - ACS Applied Bio Materials
IS - 12
ER -