Abstract
Since its introduction in 2010, Microsoft's Kinect input device for game consoles and computers has shown its great potential in a large number of applications, including game development, research and education. Many of these implementations are still in the prototype stages and exhibit a somewhat limited performance. These limitations are mainly caused by the quality of the point clouds generated by the Kinect, which include limited range, high dependency on surface properties, shadowing, low depth accuracy, etc. One of the Kinect's most significant limitations is the low accuracy and high error associated with its point cloud. The severity of these defects varies with the points' locations in the Kinect's camera coordinate system. The available traditional algorithms for processing point clouds are based on the same assumption that input point clouds are perfect and have the same characteristics throughout the entire point cloud. In the first part of this paper, the Kinect's point cloud properties (including resolution, depth accuracy, noise level and error) and their dependency on the point pixel location will be systematically studied. Second, the Kinect's calibration, both by hardware and software approaches, will be explored and methods for improving the quality of its output point clouds will be identified. Then, modified algorithms adapted to the Kinect's unique properties will be introduced. This method allows to better judge the output point cloud properties in a quantifiable manner and then to modify traditional computer vision algorithms by adjusting their assumptions regarding the input cloud properties to the actual parameters of the Kinect. Finally, the modified algorithms will be tested in a prototype application, which shows that the Kinect does have the potential for successful usage in educational applications if the according algorithms are design properly.
Original language | English |
---|---|
DOIs | |
State | Published - 2014 |
Event | ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada Duration: 14 Nov 2014 → 20 Nov 2014 |
Conference
Conference | ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 14/11/14 → 20/11/14 |
Keywords
- Algorithms modification
- Calibration
- Kinect limitation
- Microsoft Kinect