An Automatic and Efficient BERT Pruning for Edge AI Systems

Shaoyi Huang, Ning Liu, Yueying Liang, Hongwu Peng, Hongjia Li, Dongkuan Xu, Mimi Xie, Caiwen Ding

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

With the yearning for deep learning democratization, there are increasing demands to implement Transformer-based natural language processing (NLP) models on resource-constrained devices for low-latency and high accuracy. Existing BERT pruning methods require domain experts to heuristically handcraft hyperparameters to strike a balance among model size, latency, and accuracy. In this work, we propose AE-BERT, an automatic and efficient BERT pruning framework with efficient evaluation to select a "good"sub-network candidate (with high accuracy) given the overall pruning ratio constraints. Our proposed method requires no human experts experience and achieves a better accuracy performance on many NLP tasks. Our experimental results on General Language Understanding Evaluation (GLUE) benchmark show that AE-BERT outperforms the state-of-the-art (SOTA) hand-crafted pruning methods on BERT. On QNLI and RTE, we obtain 75% and 42.8% more overall pruning ratio while achieving higher accuracy. On MRPC, we obtain a 4.6 higher score than the SOTA at the same overall pruning ratio of 0.5. On STS-B, we can achieve a 40% higher pruning ratio with a very small loss in Spearman correlation compared to SOTA hand-crafted pruning methods. Experimental results also show that after model compression, the inference time of a single BERTBASE encoder on Xilinx Alveo U200 FPGA board has a 1.83× speedup compared to Intel(R) Xeon(R) Gold 5218 (2.30GHz) CPU, which shows the reasonableness of deploying the proposed method generated sub-networks of BERTBASE model on computation restricted devices.

Original languageEnglish
Title of host publicationProceedings of the 23rd International Symposium on Quality Electronic Design, ISQED 2022
ISBN (Electronic)9781665494663
DOIs
StatePublished - 2022
Event23rd International Symposium on Quality Electronic Design, ISQED 2022 - Santa Jose, United States
Duration: 6 Apr 20227 Apr 2022

Publication series

NameProceedings - International Symposium on Quality Electronic Design, ISQED
Volume2022-April
ISSN (Print)1948-3287
ISSN (Electronic)1948-3295

Conference

Conference23rd International Symposium on Quality Electronic Design, ISQED 2022
Country/TerritoryUnited States
CitySanta Jose
Period6/04/227/04/22

Keywords

  • acceleration
  • deep learning
  • pruning
  • Transformer

Fingerprint

Dive into the research topics of 'An Automatic and Efficient BERT Pruning for Edge AI Systems'. Together they form a unique fingerprint.

Cite this