An egocentric computer vision based co-robot wheelchair

Haoxiang Li, Mohammed Kutbi, Xin Li, Changjiang Cai, Philippos Mordohai, Gang Hua

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Motivated by the emerging needs to improve the quality of life for the elderly and disabled individuals who rely on wheelchairs for mobility, and who might have limited or no hand functionality at all, we propose an egocentric computer vision based co-robot wheelchair to enhance their mobility without hand usage. The co-robot wheelchair is built upon a typical commercial power wheelchair. The user can access 360 degrees of motion direction as well as a continuous range of speed without the use of hands via the egocentric computer vision based control we developed. The user wears an egocentric camera and collaborates with the robotic wheelchair by conveying the motion commands with head motions. Compared with previous sip-n-puff, chin-control and tongue-operated solutions to hands-free mobility, this egocentric computer vision based control system provides a more natural human robot interface. Our experiments show that this design is of higher usability and users can quickly learn to control and operate the wheelchair. Besides its convenience in manual navigation, the egocentric camera also supports novel user-robot interaction modes by enabling autonomous navigation towards a detected person or object of interest. User studies demonstrate the usability and efficiency of the proposed egocentric computer vision co-robot wheelchair.

Original languageEnglish
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages1829-1836
Number of pages8
ISBN (Electronic)9781509037629
DOIs
StatePublished - 28 Nov 2016
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: 9 Oct 201614 Oct 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period9/10/1614/10/16

Fingerprint

Dive into the research topics of 'An egocentric computer vision based co-robot wheelchair'. Together they form a unique fingerprint.

Cite this