TY - GEN
T1 - Ascending stairway modeling from dense depth imagery for traversability analysis
AU - Delmerico, Jeffrey A.
AU - Baran, David
AU - David, Philip
AU - Ryde, Julian
AU - Corso, Jason J.
PY - 2013
Y1 - 2013
N2 - Localization and modeling of stairways by mobile robots can enable multi-floor exploration for those platforms capable of stair traversal. Existing approaches focus on either stairway detection or traversal, but do not address these problems in the context of path planning for the autonomous exploration of multi-floor buildings. We propose a system for detecting and modeling ascending stairways while performing simultaneous localization and mapping, such that the traversability of each stairway can be assessed by estimating its physical properties. The long-term objective of our approach is to enable exploration of multiple floors of a building by allowing stairways to be considered during path planning as traversable portals to new frontiers. We design a generative model of a stairway as a single object. We localize these models with respect to the map, and estimate the dimensions of the stairway as a whole, as well as its steps. With these estimates, a robot can determine if the stairway is traversable based on its climbing capabilities. Our system consists of two parts: a computationally efficient detector that leverages geometric cues from dense depth imagery to detect sets of ascending stairs, and a stairway modeler that uses multiple detections to infer the location and parameters of a stairway that is discovered during exploration. We demonstrate the performance of this system when deployed on several mobile platforms using a Microsoft Kinect sensor.
AB - Localization and modeling of stairways by mobile robots can enable multi-floor exploration for those platforms capable of stair traversal. Existing approaches focus on either stairway detection or traversal, but do not address these problems in the context of path planning for the autonomous exploration of multi-floor buildings. We propose a system for detecting and modeling ascending stairways while performing simultaneous localization and mapping, such that the traversability of each stairway can be assessed by estimating its physical properties. The long-term objective of our approach is to enable exploration of multiple floors of a building by allowing stairways to be considered during path planning as traversable portals to new frontiers. We design a generative model of a stairway as a single object. We localize these models with respect to the map, and estimate the dimensions of the stairway as a whole, as well as its steps. With these estimates, a robot can determine if the stairway is traversable based on its climbing capabilities. Our system consists of two parts: a computationally efficient detector that leverages geometric cues from dense depth imagery to detect sets of ascending stairs, and a stairway modeler that uses multiple detections to infer the location and parameters of a stairway that is discovered during exploration. We demonstrate the performance of this system when deployed on several mobile platforms using a Microsoft Kinect sensor.
UR - http://www.scopus.com/inward/record.url?scp=84887272988&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887272988&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2013.6630886
DO - 10.1109/ICRA.2013.6630886
M3 - Conference contribution
AN - SCOPUS:84887272988
SN - 9781467356411
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 2283
EP - 2290
BT - 2013 IEEE International Conference on Robotics and Automation, ICRA 2013
T2 - 2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Y2 - 6 May 2013 through 10 May 2013
ER -