TY - JOUR
T1 - Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches
AU - Banerjee, Sonali
AU - Ghosh, Saibal
AU - Jha, Sonam
AU - Kumar, Sumit
AU - Mondal, Gourav
AU - Sarkar, Dibyendu
AU - Datta, Rupali
AU - Mukherjee, Abhishek
AU - Bhattacharyya, Pradip
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/7/1
Y1 - 2023/7/1
N2 - Potentially toxic elements (PTEs) contamination in the agricultural soil can generate a detrimental effect on the ecosystem and poses a threat to human health. The present work evaluates the PTEs concentration, source identification, probabilistic assessment of health hazards, and dietary risk analysis due to PTEs pollution in the region of the chromite-asbestos mine, India. To evaluate the health risks associated with PTEs in soil, soil tailings and rice grains were collected and studied. The results revealed that the PTEs concentration (mainly Cr and Ni) of total, DTPA-bioavailable, and rice grain was significantly above the permissible limit in site 1 (tailings) and site 2 (contaminated) as compared with site 3 (uncontaminated). The Free ion activity model (FIAM) was applied to detect the solubility of PTEs in polluted soil and their probable transfer from soil to rice grain. The hazard quotient values were significantly higher than the safe (FIAM-HQ < 0.5) for Cr (1.50E+00), Ni (1.32E+00), and, Pb (5.55E+00) except for Cd (1.43E−03), Cu (5.82E−02). Severity adjustment margin of exposure (SAMOE) results denote that the PTEs contaminated raw rice grain has high health risk [CrSAMOE: 0.001; NiSAMOE: 0.002; CdSAMOE: 0.007; PbSAMOE: 0.008] for humans except for Cu. The Positive matrix factorization (PMF) along with correlation used to apportion the source. Self-organizing map (SOM) and PMF analysis identified the source of pollution mainly from mines in this region. Monte Carlo simulation (MCS) revealed that TCR (total carcinogenic risk) cannot be insignificant and children were the maximum sufferers relative to adults via ingestion-pathway. In the spatial distribution map, the region nearer to mine is highly prone to ecological risk with respect to PTEs pollution. Based on appropriate and reasonable evaluation methods, this work will help environmental scientists and policymakers' control PTEs pollution in agricultural soils near the vicinity of mines.
AB - Potentially toxic elements (PTEs) contamination in the agricultural soil can generate a detrimental effect on the ecosystem and poses a threat to human health. The present work evaluates the PTEs concentration, source identification, probabilistic assessment of health hazards, and dietary risk analysis due to PTEs pollution in the region of the chromite-asbestos mine, India. To evaluate the health risks associated with PTEs in soil, soil tailings and rice grains were collected and studied. The results revealed that the PTEs concentration (mainly Cr and Ni) of total, DTPA-bioavailable, and rice grain was significantly above the permissible limit in site 1 (tailings) and site 2 (contaminated) as compared with site 3 (uncontaminated). The Free ion activity model (FIAM) was applied to detect the solubility of PTEs in polluted soil and their probable transfer from soil to rice grain. The hazard quotient values were significantly higher than the safe (FIAM-HQ < 0.5) for Cr (1.50E+00), Ni (1.32E+00), and, Pb (5.55E+00) except for Cd (1.43E−03), Cu (5.82E−02). Severity adjustment margin of exposure (SAMOE) results denote that the PTEs contaminated raw rice grain has high health risk [CrSAMOE: 0.001; NiSAMOE: 0.002; CdSAMOE: 0.007; PbSAMOE: 0.008] for humans except for Cu. The Positive matrix factorization (PMF) along with correlation used to apportion the source. Self-organizing map (SOM) and PMF analysis identified the source of pollution mainly from mines in this region. Monte Carlo simulation (MCS) revealed that TCR (total carcinogenic risk) cannot be insignificant and children were the maximum sufferers relative to adults via ingestion-pathway. In the spatial distribution map, the region nearer to mine is highly prone to ecological risk with respect to PTEs pollution. Based on appropriate and reasonable evaluation methods, this work will help environmental scientists and policymakers' control PTEs pollution in agricultural soils near the vicinity of mines.
KW - Chromite -asbestos mine
KW - Multi-model analysis
KW - Potentially toxic elements
KW - Soil and health risk evaluation
KW - Source apportionment
UR - http://www.scopus.com/inward/record.url?scp=85151497905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151497905&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2023.163228
DO - 10.1016/j.scitotenv.2023.163228
M3 - Article
C2 - 37019224
AN - SCOPUS:85151497905
SN - 0048-9697
VL - 880
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 163228
ER -