TY - JOUR
T1 - Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions
AU - Moon, Deok Hyun
AU - Park, Jae Woo
AU - Koutsospyros, Agamemnon
AU - Cheong, Kyung Hoon
AU - Chang, Yoon Young
AU - Baek, Kitae
AU - Jo, Raehyun
AU - Park, Jeong Hun
N1 - Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Bench-scale soil washing experiments were conducted for simultaneous removal of heavy metals (Pb, Cu, Zn) and low-level petroleum hydrocarbon contaminants from soils. Various washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), tartaric acid (C4H6O6) and ethylenediaminetetraacetic acid (C10H16N2O8, EDTA) were used. The concentration of the washing solutions ranged from 0.1 to 3M with a liquid-to-solid ratio of 10. The soil washing results showed that hydrochloric acid (HCl) was the best washing solution at 3M for heavy metal removal. Other washing solutions also showed a significant removal of heavy metals, except for sulfuric acid (H2SO4). Sulfuric acid (H2SO4) exhibited the worst performance among all washing solutions used with respect to Pb removal. 1M HCl and HNO3 were sufficient for effective Pb and Cu removal, and all of the tested washing solutions at a concentration of 0.1M produced results compliant with the Korean warning standard for Zn removal. In the case of total petroleum hydrocarbons (TPH), tartaric acid (C4H6O6) produced the highest removals at all concentration levels compared with other washing solutions. More specifically, TPH removal efficiencies exceeded 33 and 82 % at the lowest (0.1M) and highest (3M) tartaric acid (TA) concentrations, respectively. Overall, TA could be a viable washing solution for the removal of both heavy metals (Pb, Cu, Zn) and TPH from contaminated soils.
AB - Bench-scale soil washing experiments were conducted for simultaneous removal of heavy metals (Pb, Cu, Zn) and low-level petroleum hydrocarbon contaminants from soils. Various washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), tartaric acid (C4H6O6) and ethylenediaminetetraacetic acid (C10H16N2O8, EDTA) were used. The concentration of the washing solutions ranged from 0.1 to 3M with a liquid-to-solid ratio of 10. The soil washing results showed that hydrochloric acid (HCl) was the best washing solution at 3M for heavy metal removal. Other washing solutions also showed a significant removal of heavy metals, except for sulfuric acid (H2SO4). Sulfuric acid (H2SO4) exhibited the worst performance among all washing solutions used with respect to Pb removal. 1M HCl and HNO3 were sufficient for effective Pb and Cu removal, and all of the tested washing solutions at a concentration of 0.1M produced results compliant with the Korean warning standard for Zn removal. In the case of total petroleum hydrocarbons (TPH), tartaric acid (C4H6O6) produced the highest removals at all concentration levels compared with other washing solutions. More specifically, TPH removal efficiencies exceeded 33 and 82 % at the lowest (0.1M) and highest (3M) tartaric acid (TA) concentrations, respectively. Overall, TA could be a viable washing solution for the removal of both heavy metals (Pb, Cu, Zn) and TPH from contaminated soils.
KW - Heavy metals
KW - Hydrochloric acid
KW - Petroleum
KW - Soil washing
KW - TPH
KW - Tartaric acid
UR - http://www.scopus.com/inward/record.url?scp=84971657655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971657655&partnerID=8YFLogxK
U2 - 10.1007/s12665-016-5690-6
DO - 10.1007/s12665-016-5690-6
M3 - Article
AN - SCOPUS:84971657655
SN - 1866-6280
VL - 75
JO - Environmental Earth Sciences
JF - Environmental Earth Sciences
IS - 10
M1 - 884
ER -