Block dense weighted networks with augmented degree correction

Benjamin Leinwand, Vladas Pipiras

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Dense networks with weighted connections often exhibit a community-like structure, where although most nodes are connected to each other, different patterns of edge weights may emerge depending on each node's community membership. We propose a new framework for generating and estimating dense weighted networks with potentially different connectivity patterns across different communities. The proposed model relies on a particular class of functions which map individual node characteristics to the edges connecting those nodes, allowing for flexibility while requiring a small number of parameters relative to the number of edges. By leveraging the estimation techniques, we also develop a bootstrap methodology for generating new networks on the same set of vertices, which may be useful in circumstances where multiple data sets cannot be collected. Performance of these methods is analyzed in theory, simulations, and real data.

Original languageEnglish
Pages (from-to)301-321
Number of pages21
JournalNetwork Science
Volume10
Issue number3
DOIs
StatePublished - 14 Sep 2022

Keywords

  • Keywords: dense networks
  • bootstrap
  • community detection
  • degree corrected block model
  • weighted networks

Fingerprint

Dive into the research topics of 'Block dense weighted networks with augmented degree correction'. Together they form a unique fingerprint.

Cite this