Causal explanation under indeterminism: A sampling approach

Christopher A. Merck, Samantha Kleinberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

One of the key uses of causes is to explain why things happen. Explanations of specific events, like an individual's heart attack on Monday afternoon or a particular car accident, help assign responsibility and inform our future decisions. Computational methods for causal inference make use of the vast amounts of data collected by individuals to better understand their behavior and improve their health. However, most methods for explanation of specific events have provided theoretical approaches with limited applicability. In contrast we make two main contributions: An algorithm for explanation that calculates the strength of token causes, and an evaluation based on simulated data that enables objective comparison against prior methods and ground truth. We show that the approach finds the correct relationships in classic test cases (causal chains, common cause, and backup causation) and in a realistic scenario (explaining hyperglycemic episodes in a simulation of type 1 diabetes).

Original languageEnglish
Title of host publication30th AAAI Conference on Artificial Intelligence, AAAI 2016
Pages1037-1043
Number of pages7
ISBN (Electronic)9781577357605
StatePublished - 2016
Event30th AAAI Conference on Artificial Intelligence, AAAI 2016 - Phoenix, United States
Duration: 12 Feb 201617 Feb 2016

Publication series

Name30th AAAI Conference on Artificial Intelligence, AAAI 2016

Conference

Conference30th AAAI Conference on Artificial Intelligence, AAAI 2016
Country/TerritoryUnited States
CityPhoenix
Period12/02/1617/02/16

Fingerprint

Dive into the research topics of 'Causal explanation under indeterminism: A sampling approach'. Together they form a unique fingerprint.

Cite this