CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation

Konstantinos Batsos, Changjiang Cai, Philippos Mordohai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

65 Scopus citations

Abstract

Recently, there has been a paradigm shift in stereo matching with learning-based methods achieving the best results on all popular benchmarks. The success of these methods is due to the availability of training data with ground truth; training learning-based systems on these datasets has allowed them to surpass the accuracy of conventional approaches based on heuristics and assumptions. Many of these assumptions, however, had been validated extensively and hold for the majority of possible inputs. In this paper, we generate a matching volume leveraging both data with ground truth and conventional wisdom. We accomplish this by coalescing diverse evidence from a bidirectional matching process via random forest classifiers. We show that the resulting matching volume estimation method achieves similar accuracy to purely data-driven alternatives on benchmarks and that it generalizes to unseen data much better. In fact, the results we submitted to the KITTI and ETH3D benchmarks were generated using a classifier trained on the Middlebury 2014 dataset.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Pages2060-2069
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - 14 Dec 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Fingerprint

Dive into the research topics of 'CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation'. Together they form a unique fingerprint.

Cite this