Cloud-based malware detection game for mobile devices with offloading

Liang Xiao, Yanda Li, Xueli Huang, Xiaojiang Du

Research output: Contribution to journalArticlepeer-review

168 Scopus citations

Abstract

As accurate malware detection on mobile devices requires fast process of a large number of application traces, cloud-based malware detection can utilize the data sharing and powerful computational resources of security servers to improve the detection performance. In this paper, we investigate the cloud-based malware detection game, in which mobile devices offload their application traces to security servers via base stations or access points in dynamic networks. We derive the Nash equilibrium (NE) of the static malware detection game and present the existence condition of the NE, showing how mobile devices share their application traces at the security server to improve the detection accuracy, and compete for the limited radio bandwidth, the computational and communication resources of the server. We design a malware detection scheme with Q-learning for a mobile device to derive the optimal offloading rate without knowing the trace generation and the radio bandwidth model of other mobile devices. The detection performance is further improved with the Dyna architecture, in which a mobile device learns from the hypothetical experience to increase its convergence rate. We also design a post-decision state learning-based scheme that utilizes the known radio channel model to accelerate the reinforcement learning process in the malware detection. Simulation results show that the proposed schemes improve the detection accuracy, reduce the detection delay, and increase the utility of a mobile device in the dynamic malware detection game, compared with the benchmark strategy.

Original languageEnglish
Article number7887695
Pages (from-to)2742-2750
Number of pages9
JournalIEEE Transactions on Mobile Computing
Volume16
Issue number10
DOIs
StatePublished - 1 Oct 2017

Keywords

  • Mobile device
  • game theory
  • malware detection
  • offloading
  • reinforcement learning

Fingerprint

Dive into the research topics of 'Cloud-based malware detection game for mobile devices with offloading'. Together they form a unique fingerprint.

Cite this