Compact, generalized component mode mistuning representation for modeling bladed disk vibration

Sang Ho Lim, Ronnie Bladh, Matthew P. Castanier, Christophe Pierre

Research output: Contribution to journalArticlepeer-review

233 Scopus citations

Abstract

New techniques are presented for generating reduced-order models of the vibration of mistimed bladed disks from parent finite element models. A novel component-based modeling framework is developed by partitioning the system into a tuned bladed disk component and virtual blade mistiming components. The mistuning components are defined by the differences between the mistimed and tuned blade mass and stiffness matrices. The mistuned-system model is assembled with a component mode synthesis technique, using a basis of tuned-system normal modes and attachment modes. The formulation developed is general and can be applied to any mistimed bladed disk, including those with large geometric mistunning (e.g., severe blade damage). In the case of small (i.e., blade frequency) mistuning, a compact reduced-order model is derived by neglecting the attachment modes. For this component mode mistuning model, the blade mistuning is projected first onto the component modes of a tuned, cantilevered blade, and then projected again onto the tuned-system normal modes via modal participation factors. In this manner, several natural frequencies of each mistimed blade can be used to capture systematically the effects of the complex physical sources of mistuning. A numerical validation of the developed methods is performed for both large and small mistuning cases using a finite element model of an industrial rotor.

Original languageEnglish
Pages (from-to)2285-2298
Number of pages14
JournalAIAA journal
Volume45
Issue number9
DOIs
StatePublished - Sep 2007

Fingerprint

Dive into the research topics of 'Compact, generalized component mode mistuning representation for modeling bladed disk vibration'. Together they form a unique fingerprint.

Cite this