Abstract
This paper describes a methodology for developing reduced-order dynamic models of nonlinear structural systems that are composed of an assembly of component structures. The approach is a nonlinear extension of the fixed-interface component mode synthesis technique developed for linear structures by Hurty and modified by Craig and Bampton. Specifically, the case of nonlinear substructures is handled by using fixedinterface nonlinear normal modes. These normal modes are constructed for the various substructures using an invariant manifold approach, and are then coupled through the traditional linear constraint modes (i.e., the static deformation shapes produced by unit interface motions). A simple system is used to demonstrate the proof of concept and show the effectiveness of the proposed procedure. Simulations are performed to show that the reduced-order model obtained from the proposed procedure outperforms the reduced-order model obtained from the classical fixed-interface linear component mode synthesis approach. Moreover, the proposed method is readily applicable to large-scale nonlinear structural systems.
Original language | English |
---|---|
Pages | 1155-1165 |
Number of pages | 11 |
DOIs | |
State | Published - 2003 |
Event | 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Chicago, IL, United States Duration: 2 Sep 2003 → 6 Sep 2003 |
Conference
Conference | 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
---|---|
Country/Territory | United States |
City | Chicago, IL |
Period | 2/09/03 → 6/09/03 |