Component mode synthesis using nonlinear normal modes

Polarit Apiwattanalunggarn, Steven W. Shaw, Christophe Pierre

Research output: Contribution to conferencePaperpeer-review

Abstract

This paper describes a methodology for developing reduced-order dynamic models of nonlinear structural systems that are composed of an assembly of component structures. The approach is a nonlinear extension of the fixed-interface component mode synthesis technique developed for linear structures by Hurty and modified by Craig and Bampton. Specifically, the case of nonlinear substructures is handled by using fixedinterface nonlinear normal modes. These normal modes are constructed for the various substructures using an invariant manifold approach, and are then coupled through the traditional linear constraint modes (i.e., the static deformation shapes produced by unit interface motions). A simple system is used to demonstrate the proof of concept and show the effectiveness of the proposed procedure. Simulations are performed to show that the reduced-order model obtained from the proposed procedure outperforms the reduced-order model obtained from the classical fixed-interface linear component mode synthesis approach. Moreover, the proposed method is readily applicable to large-scale nonlinear structural systems.

Original languageEnglish
Pages1155-1165
Number of pages11
DOIs
StatePublished - 2003
Event2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Chicago, IL, United States
Duration: 2 Sep 20036 Sep 2003

Conference

Conference2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityChicago, IL
Period2/09/036/09/03

Fingerprint

Dive into the research topics of 'Component mode synthesis using nonlinear normal modes'. Together they form a unique fingerprint.

Cite this