Compressive Non-Line-of-Sight Imaging with Deep Learning

Shenyu Zhu, Yong Meng Sua, Ting Bu, Yu Ping Huang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

In non-line-of-sight (NLOS) imaging, the spatial information of hidden targets is reconstructed from the time-of-light (TOF) of the multiple bounced signal photons. The need for NLOS imagers to perform extensive scanning in the transverse spatial dimensions constrains the imaging speed and reconstruction quality while limiting their applications on static scenes. Utilizing a photon TOF histogram with picosecond temporal resolution, we develop compressive non-line-of-sight imaging enabled by deep learning. Two-dimensional images (32×32 pixels) of the NLOS targets can be reconstructed with superior reconstruction quality via a convolutional neural network (CNN), using significantly downscaled data (8×8 scanning points) at a downsampling ratio of 6.25% compared to the traditional methods. The CNN is end-to-end trained purely using simulated data but robust for image reconstruction with experiment data. Our results suggest that deep learning is effective for reducing the scanning points and total capture time towards scanningless NLOS imaging and videography.

Original languageEnglish
Article number034090
JournalPhysical Review Applied
Volume19
Issue number3
DOIs
StatePublished - Mar 2023

Fingerprint

Dive into the research topics of 'Compressive Non-Line-of-Sight Imaging with Deep Learning'. Together they form a unique fingerprint.

Cite this