TY - JOUR
T1 - Correction
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
AU - Shekhtman, David
AU - Mustafa, Muhammad A.
AU - Parziale, Nicholaus J.
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Correction Notice (1) Revised reference list (see pages below) that uses bracketed numbers in place of footnotes so that Google Scholar properly identifies and lists our references. (2) Request that the website-displayed abstract have a typo corrected in the first sentence. The word “ow” should be “flow.” Thank you very much, David Shekhtman. Danehy, P. M., Weisberger, J., Johansen, C., Reese, D., Fahringer, T., Parziale, N. J., Dedic, C., Estevadeordal, J., and Cruden, B. A., “Non-Intrusive Measurement Techniques for Flow Characterization of Hypersonic Wind Tunnels,” Flow Characterization and Modeling of Hypersonic Wind Tunnels (NATO Science and Technology Organization Lecture Series STO-AVT 325), NF1676L-31725-Von Karman Institute, Brussels, Belgium, 2018. [2] Whitehead, C. A., Cannon, B. D., and Wacker, J. F., “Trace detection of krypton using laser-induced fluorescence,” Applied Optics, Vol. 34, No. 18, 1995, pp. 3250–3256. doi: 10.1364/AO.34.003250. [3] Narayanaswamy, V., Burns, R., and Clemens, N. T., “Kr-PLIF for scalar imaging in supersonic flows,” Optics Letters, Vol. 36, No. 21, 2011, pp. 4185–4187. doi: 10.1364/OL.36.004185. [4] Hsu, A. G., Narayanaswamy, V., Clemens, N. T., and Frank, J. H., “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” Proceedings of the Combustion Institute, Vol. 33, No. 1, 2011, pp. 759–766. doi: 10.1016/j.proci.2010.06.051. [5] Buxton, O. R. H., Burns, R. A., and Clemens, N. T., “Simultaneous Krypton PLIF, LII and PIV Measurements in a Sooting Jet Flame,” Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA-2013-0479, Grapevine, Texas, 2013. doi: 10.2514/6.2013-479. [6] Park, O., Burns, R. A., Buxton, O. H. R., and Clemens, N. T., “Mixture fraction, soot volume fraction, and velocity imaging in the soot-inception region of a turbulent non-premixed jet flame,” Proceedings of the Combustion Institute, Vol. 36, No. 1, 2017, pp. 899–907. doi: 10.1016/j.proci.2016.08.048. [7] Zelenak, D., and Narayanaswamy, V., “Composition-independent mean temperature measurements in laminar diffusion flames using spectral lineshape information,” Experiments in Fluids, Vol. 58, No. 10, 2017, p. 147. doi: 10.1007/s00348-017-2430-y. [8] Sahoo, A., and Narayanaswamy, V., “Two-dimensional temperature field imaging in laminar sooting flames using a two-line Kr PLIF approach,” Applied Physics B, Vol. 125, No. 9, 2019, p. 168. doi: 10.1007/s00340-019-7280-2. [9] Zelenak, D., and Narayanaswamy, V., “Demonstration of a two-line Kr PLIF thermometry technique for gaseous combustion applications,” Optics Letters, Vol. 44, No. 2, 2019, pp. 367–370. doi: 10.1364/OL.44.000367. [10] Niemi, K., Schulz-Von Der Gathen, V., and Döbele, H. F., “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” Journal of Physics D: Applied Physics, Vol. 34, No. 15, 2001, p. 2330. doi: 10.1088/0022-3727/34/15/312. [11] Schmidt, J. B., Roy, S., Kulatilaka, W. D., Shkurenkov, I., Adamovich, I. V., Lempert, W. R., and Gord, J. R., “Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas,” Journal of Physics D: Applied Physics, Vol. 50, No. 1, 2016, p. 015204. doi: 10.1088/1361-6463/50/1/015204. [12] Wang, Y., Capps, C., and Kulatilaka, W. D., “Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging,” Optics letters, Vol. 42, No. 4, 2017, pp. 711–714. doi: 10.1364/OL.42.000711. [13] Richardson, D. R., Jiang, N., Stauffer, H. U., Kearney, S. P., Roy, S., and Gord, J. R., “Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton,” Optics Letters, Vol. 42, No. 17, 2017, pp. 3498–3501. doi: 10.1364/OL.42.003498. [14] Grib, S. W., Hsu, P. S., Stauffer, H. U., Carter, C. D., and Roy, S., “Comparison of femtosecond and nanosecond two-photon-absorption laser-induced fluorescence of krypton,” Applied Optics, Vol. 58, No. 27, 2019, pp. 7621–7627. doi: 10.1364/AO.58.007621. [15] Grib, S. W., Hsu, P. S., Jiang, N., Felver, J. J., Schumaker, S. A., Carter, C. D., and Roy, S., “100 kHz krypton planar laser-induced fluorescence imaging,” Optics Letters, Vol. 45, No. 14, 2020, pp. 3832–3835. doi: 10.1364/OL.395389. [16] Mills, J. L., Sukenik, C. I., and Balla, R. J., “Hypersonic Wake Diagnostics Using Laser Induced Fluorescence Tech-niques,” Proceedings of 42nd AIAA Plasmadynamics and Lasers Conference, AIAA 2011-3459, Honolulu, Hawaii, 2011. doi: 10.2514/6.2011-3459. [17] Balla, R. J., and Everhart, J. L., “Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10,” AIAA Journal, Vol. 50, No. 3, 2012, pp. 698–707. doi: 10.2514/1.J051334. [18] Parziale, N. J., Smith, M. S., and Marineau, E. C., “Krypton tagging velocimetry of an underexpanded jet,” Applied Optics, Vol. 54, No. 16, 2015, pp. 5094–5101. doi: 10.1364/AO.54.005094. Zahradka, D., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer,” Experiments in Fluids, Vol. 57, 2016, p. 62. doi: 10.1007/s00348-016-2148-2. [20] Mustafa, M. A., Hunt, M. B., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Krypton Tagging Velocimetry (KTV) Investigation of Shock-Wave/Turbulent Boundary-Layer Interaction,” Proceedings of AIAA SciTech 2017, AIAA-2017-0025, Grapevine, Texas, 2017. doi: 10.2514/6.2017-0025. [21] Mustafa, M. A.,, and Parziale, N. J., “Krypton Tagging Velocimetry in the Stevens Shock Tube,” Proceedings of 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA-2017-3897, Denver, Colorado, 2017. doi: 10.2514/6.2017-3897. [22] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Nonintrusive Freestream Velocity Measurement in a Large-Scale Hypersonic Wind Tunnel,” AIAA Journal, Vol. 55, No. 10, 2017, pp. 3611–3616. doi: 10.2514/1.J056177. [23] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Two-Dimensional Krypton Tagging Velocimetry (KTV-2D) Investigation of Shock-Wave/Turbulent Boundary-Layer Interaction,” Proceedings of AIAA SciTech 2018, AIAA-2018-1771, Kissimmee, Florida, 2018. doi: 10.2514/6.2018-1771. [24] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Amplification and structure of streamwise-velocity fluctuations in four shock-wave/turbulent boundary-layer interactions,” Proceedings of AIAA Aviation 2018, AIAA-2018-3704, Atlanta, Georgia, 2018. doi: 10.2514/6.2018-3704. [25] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Amplification and structure of streamwise-velocity fluctuations in compression-corner shock-wave/turbulent boundary-layer interactions,” Journal of Fluid Mechanics, Vol. 863, 2019, pp. 1091–1122. doi: 10.1017/jfm.2018.1029. [26] Mustafa, M. A., and Parziale, N. J., “Simplified read schemes for krypton tagging velocimetry in N2 and air,” Optics Letters, Vol. 43, No. 12, 2018, pp. 2909–2912. doi: 10.1364/OL.43.002909. [27] Mustafa, M. A., Shekhtman, D., and Parziale, N. J., “Single-Laser Krypton Tagging Velocimetry Investigation of Supersonic Air and N2 Boundary-Layer Flows over a Hollow Cylinder in a Shock Tube,” Physical Review Applied, Vol. 11, No. 6, 2019, p. 064013. doi: 10.1103/PhysRevApplied.11.064013. [28] Shekhtman, D., Mustafa, M. A., and Parziale, N. J., “Two-photon cross-section calculations for krypton in the 190-220 nm range,” Applied Optics, Vol. 59, No. 34, 2020, pp. 10826–10837. doi: 10.1364/AO.410806. [29] Fonseca, V., and Campos, J., “Lifetimes of Some Levels Belonging to the 45 5 and 45 6 Configurations of Kr,” Physical Review A, Vol. 17, No. 3, 1978, pp. 1080–1082. doi: 10.1103/PhysRevA.17.1080. [30] Saito, N., Oishi, Y., Miyazaki, K., K., O., Nakamura, J., Louchev, O., Iwasaki, M., and Wada, S., “High-efficiency generation of pulsed Lyman- radiation by resonant laser wave mixing in low pressure Kr-Ar mixture,” Optics Express, Vol. 24, No. 7, 2016, pp. 215–386. doi: 10.1364/OE.24.007566. [31] Miller, J. C., “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Physical Review A, Vol. 40, 1989, pp. 6969–6976. doi: 10.1103/PhysRevA.40.6969. [32] Shiu, Y., and Biondi, M. A., “Dissociative recombination in krypton: Dependence of the total rate coefficient and excited-state production on electron temperature,” Physical Review Applied, Vol. 16, 1977, pp. 1817–1820. doi: 10.1103/PhysRevA.16.1817. [33] Dakka, M. A., Tsiminis, G., Glover, R. D., Perrella, C., Moffatt, J., Spooner, N. A., Sang, R. T., Light, P. S., and Luiten, A. N., “Laser-Based Metastable Krypton Generation,” Phys. Rev. Lett., Vol. 121, 2018, p. 093201. doi: 10.1103/PhysRevLett.121.093201. [34] Eckbreth, A. C., Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Gordon and Breach Publications, 1996. [35] Khambatta, N. M., Oertel, J. A., Silk, R., Radziemski, L. J., and Mack, J. M., “Absolute excited state and ion densities from two-and three-photon processes in some 6p levels of atomic krypton,” Journal of Applied Physics, Vol. 64, No. 10, 1988, pp. 4809–4814. doi: 10.1063/1.341226. [36] Lambropoulos, P., “Topics on Multiphoton Processes in Atoms,” Advances in Atomic and Molecular Physics, Vol. 12, 1976, pp. 87–164. doi: 10.1016/S0065-2199(08)60043-3. [37] Khambatta, N. M., Radziemski, L. J., and Dixit, S. N., “Upper bound for a three-photon excitation cross section in atomic argon in the ultraviolet regime,” Physical Review A, Vol. 39, 1989, pp. 3842–3845. doi: 10.1103/PhysRevA.39.3842.
AB - Correction Notice (1) Revised reference list (see pages below) that uses bracketed numbers in place of footnotes so that Google Scholar properly identifies and lists our references. (2) Request that the website-displayed abstract have a typo corrected in the first sentence. The word “ow” should be “flow.” Thank you very much, David Shekhtman. Danehy, P. M., Weisberger, J., Johansen, C., Reese, D., Fahringer, T., Parziale, N. J., Dedic, C., Estevadeordal, J., and Cruden, B. A., “Non-Intrusive Measurement Techniques for Flow Characterization of Hypersonic Wind Tunnels,” Flow Characterization and Modeling of Hypersonic Wind Tunnels (NATO Science and Technology Organization Lecture Series STO-AVT 325), NF1676L-31725-Von Karman Institute, Brussels, Belgium, 2018. [2] Whitehead, C. A., Cannon, B. D., and Wacker, J. F., “Trace detection of krypton using laser-induced fluorescence,” Applied Optics, Vol. 34, No. 18, 1995, pp. 3250–3256. doi: 10.1364/AO.34.003250. [3] Narayanaswamy, V., Burns, R., and Clemens, N. T., “Kr-PLIF for scalar imaging in supersonic flows,” Optics Letters, Vol. 36, No. 21, 2011, pp. 4185–4187. doi: 10.1364/OL.36.004185. [4] Hsu, A. G., Narayanaswamy, V., Clemens, N. T., and Frank, J. H., “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” Proceedings of the Combustion Institute, Vol. 33, No. 1, 2011, pp. 759–766. doi: 10.1016/j.proci.2010.06.051. [5] Buxton, O. R. H., Burns, R. A., and Clemens, N. T., “Simultaneous Krypton PLIF, LII and PIV Measurements in a Sooting Jet Flame,” Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA-2013-0479, Grapevine, Texas, 2013. doi: 10.2514/6.2013-479. [6] Park, O., Burns, R. A., Buxton, O. H. R., and Clemens, N. T., “Mixture fraction, soot volume fraction, and velocity imaging in the soot-inception region of a turbulent non-premixed jet flame,” Proceedings of the Combustion Institute, Vol. 36, No. 1, 2017, pp. 899–907. doi: 10.1016/j.proci.2016.08.048. [7] Zelenak, D., and Narayanaswamy, V., “Composition-independent mean temperature measurements in laminar diffusion flames using spectral lineshape information,” Experiments in Fluids, Vol. 58, No. 10, 2017, p. 147. doi: 10.1007/s00348-017-2430-y. [8] Sahoo, A., and Narayanaswamy, V., “Two-dimensional temperature field imaging in laminar sooting flames using a two-line Kr PLIF approach,” Applied Physics B, Vol. 125, No. 9, 2019, p. 168. doi: 10.1007/s00340-019-7280-2. [9] Zelenak, D., and Narayanaswamy, V., “Demonstration of a two-line Kr PLIF thermometry technique for gaseous combustion applications,” Optics Letters, Vol. 44, No. 2, 2019, pp. 367–370. doi: 10.1364/OL.44.000367. [10] Niemi, K., Schulz-Von Der Gathen, V., and Döbele, H. F., “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” Journal of Physics D: Applied Physics, Vol. 34, No. 15, 2001, p. 2330. doi: 10.1088/0022-3727/34/15/312. [11] Schmidt, J. B., Roy, S., Kulatilaka, W. D., Shkurenkov, I., Adamovich, I. V., Lempert, W. R., and Gord, J. R., “Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas,” Journal of Physics D: Applied Physics, Vol. 50, No. 1, 2016, p. 015204. doi: 10.1088/1361-6463/50/1/015204. [12] Wang, Y., Capps, C., and Kulatilaka, W. D., “Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging,” Optics letters, Vol. 42, No. 4, 2017, pp. 711–714. doi: 10.1364/OL.42.000711. [13] Richardson, D. R., Jiang, N., Stauffer, H. U., Kearney, S. P., Roy, S., and Gord, J. R., “Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton,” Optics Letters, Vol. 42, No. 17, 2017, pp. 3498–3501. doi: 10.1364/OL.42.003498. [14] Grib, S. W., Hsu, P. S., Stauffer, H. U., Carter, C. D., and Roy, S., “Comparison of femtosecond and nanosecond two-photon-absorption laser-induced fluorescence of krypton,” Applied Optics, Vol. 58, No. 27, 2019, pp. 7621–7627. doi: 10.1364/AO.58.007621. [15] Grib, S. W., Hsu, P. S., Jiang, N., Felver, J. J., Schumaker, S. A., Carter, C. D., and Roy, S., “100 kHz krypton planar laser-induced fluorescence imaging,” Optics Letters, Vol. 45, No. 14, 2020, pp. 3832–3835. doi: 10.1364/OL.395389. [16] Mills, J. L., Sukenik, C. I., and Balla, R. J., “Hypersonic Wake Diagnostics Using Laser Induced Fluorescence Tech-niques,” Proceedings of 42nd AIAA Plasmadynamics and Lasers Conference, AIAA 2011-3459, Honolulu, Hawaii, 2011. doi: 10.2514/6.2011-3459. [17] Balla, R. J., and Everhart, J. L., “Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10,” AIAA Journal, Vol. 50, No. 3, 2012, pp. 698–707. doi: 10.2514/1.J051334. [18] Parziale, N. J., Smith, M. S., and Marineau, E. C., “Krypton tagging velocimetry of an underexpanded jet,” Applied Optics, Vol. 54, No. 16, 2015, pp. 5094–5101. doi: 10.1364/AO.54.005094. Zahradka, D., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer,” Experiments in Fluids, Vol. 57, 2016, p. 62. doi: 10.1007/s00348-016-2148-2. [20] Mustafa, M. A., Hunt, M. B., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Krypton Tagging Velocimetry (KTV) Investigation of Shock-Wave/Turbulent Boundary-Layer Interaction,” Proceedings of AIAA SciTech 2017, AIAA-2017-0025, Grapevine, Texas, 2017. doi: 10.2514/6.2017-0025. [21] Mustafa, M. A.,, and Parziale, N. J., “Krypton Tagging Velocimetry in the Stevens Shock Tube,” Proceedings of 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA-2017-3897, Denver, Colorado, 2017. doi: 10.2514/6.2017-3897. [22] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Nonintrusive Freestream Velocity Measurement in a Large-Scale Hypersonic Wind Tunnel,” AIAA Journal, Vol. 55, No. 10, 2017, pp. 3611–3616. doi: 10.2514/1.J056177. [23] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Two-Dimensional Krypton Tagging Velocimetry (KTV-2D) Investigation of Shock-Wave/Turbulent Boundary-Layer Interaction,” Proceedings of AIAA SciTech 2018, AIAA-2018-1771, Kissimmee, Florida, 2018. doi: 10.2514/6.2018-1771. [24] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Amplification and structure of streamwise-velocity fluctuations in four shock-wave/turbulent boundary-layer interactions,” Proceedings of AIAA Aviation 2018, AIAA-2018-3704, Atlanta, Georgia, 2018. doi: 10.2514/6.2018-3704. [25] Mustafa, M. A., Parziale, N. J., Smith, M. S., and Marineau, E. C., “Amplification and structure of streamwise-velocity fluctuations in compression-corner shock-wave/turbulent boundary-layer interactions,” Journal of Fluid Mechanics, Vol. 863, 2019, pp. 1091–1122. doi: 10.1017/jfm.2018.1029. [26] Mustafa, M. A., and Parziale, N. J., “Simplified read schemes for krypton tagging velocimetry in N2 and air,” Optics Letters, Vol. 43, No. 12, 2018, pp. 2909–2912. doi: 10.1364/OL.43.002909. [27] Mustafa, M. A., Shekhtman, D., and Parziale, N. J., “Single-Laser Krypton Tagging Velocimetry Investigation of Supersonic Air and N2 Boundary-Layer Flows over a Hollow Cylinder in a Shock Tube,” Physical Review Applied, Vol. 11, No. 6, 2019, p. 064013. doi: 10.1103/PhysRevApplied.11.064013. [28] Shekhtman, D., Mustafa, M. A., and Parziale, N. J., “Two-photon cross-section calculations for krypton in the 190-220 nm range,” Applied Optics, Vol. 59, No. 34, 2020, pp. 10826–10837. doi: 10.1364/AO.410806. [29] Fonseca, V., and Campos, J., “Lifetimes of Some Levels Belonging to the 45 5 and 45 6 Configurations of Kr,” Physical Review A, Vol. 17, No. 3, 1978, pp. 1080–1082. doi: 10.1103/PhysRevA.17.1080. [30] Saito, N., Oishi, Y., Miyazaki, K., K., O., Nakamura, J., Louchev, O., Iwasaki, M., and Wada, S., “High-efficiency generation of pulsed Lyman- radiation by resonant laser wave mixing in low pressure Kr-Ar mixture,” Optics Express, Vol. 24, No. 7, 2016, pp. 215–386. doi: 10.1364/OE.24.007566. [31] Miller, J. C., “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Physical Review A, Vol. 40, 1989, pp. 6969–6976. doi: 10.1103/PhysRevA.40.6969. [32] Shiu, Y., and Biondi, M. A., “Dissociative recombination in krypton: Dependence of the total rate coefficient and excited-state production on electron temperature,” Physical Review Applied, Vol. 16, 1977, pp. 1817–1820. doi: 10.1103/PhysRevA.16.1817. [33] Dakka, M. A., Tsiminis, G., Glover, R. D., Perrella, C., Moffatt, J., Spooner, N. A., Sang, R. T., Light, P. S., and Luiten, A. N., “Laser-Based Metastable Krypton Generation,” Phys. Rev. Lett., Vol. 121, 2018, p. 093201. doi: 10.1103/PhysRevLett.121.093201. [34] Eckbreth, A. C., Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Gordon and Breach Publications, 1996. [35] Khambatta, N. M., Oertel, J. A., Silk, R., Radziemski, L. J., and Mack, J. M., “Absolute excited state and ion densities from two-and three-photon processes in some 6p levels of atomic krypton,” Journal of Applied Physics, Vol. 64, No. 10, 1988, pp. 4809–4814. doi: 10.1063/1.341226. [36] Lambropoulos, P., “Topics on Multiphoton Processes in Atoms,” Advances in Atomic and Molecular Physics, Vol. 12, 1976, pp. 87–164. doi: 10.1016/S0065-2199(08)60043-3. [37] Khambatta, N. M., Radziemski, L. J., and Dixit, S. N., “Upper bound for a three-photon excitation cross section in atomic argon in the ultraviolet regime,” Physical Review A, Vol. 39, 1989, pp. 3842–3845. doi: 10.1103/PhysRevA.39.3842.
UR - http://www.scopus.com/inward/record.url?scp=85126181608&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126181608&partnerID=8YFLogxK
U2 - 10.2514/6.2021-1300.c1
DO - 10.2514/6.2021-1300.c1
M3 - Comment/debate
AN - SCOPUS:85126181608
JO - AIAA Scitech 2021 Forum
JF - AIAA Scitech 2021 Forum
M1 - AIAA 2021-1300.c1
Y2 - 11 January 2021 through 15 January 2021
ER -
Duration: 11 Jan 2021 → 15 Jan 2021