CRISP: Consensus regularized selection based prediction

Ping Wang, Karthik K. Padthe, Bhanukiran Vinzamuri, Chandan K. Reddy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Integrating regularization methods with standard loss functions such as the least squares, hinge loss, etc., within a regression framework has become a popular choice for researchers to learn predictive models with lower variance and better generalization ability. Regularizers also aid in building interpretable models with high-dimensional data which makes them very appealing. It is observed that each regularizer is uniquely formulated in order to capture data-specific properties such as correlation, structured sparsity and temporal smoothness. The problem of obtaining a consensus among such diverse regularizers while learning a predictive model is extremely important in order to determine the optimal regularizer for the problem. The advantage of such an approach is that it preserves the simplicity of the final model learned by selecting a single candidate model which is not the case with ensemble methods as they use multiple candidate models for prediction. This is called the consensus regularization problem which has not received much attention in the literature due to the inherent difficulty associated with learning and selecting a model from an integrated regularization framework. To solve this problem, in this paper, we propose a method to generate a committee of non-convex regularized linear regression models, and use a consensus criterion to determine the optimal model for prediction. Each corresponding non-convex optimization problem in the committee is solved efficiently using the cyclic-coordinate descent algorithm with the generalized thresholding operator. Our Consensus RegularIzation Selection based Prediction (CRISP) model is evaluated on electronic health records (EHRs) obtained from a large hospital for the congestive heart failure readmission prediction problem. We also evaluate our model on high-dimensional synthetic datasets to assess its performance. The results indicate that CRISP outperforms several state-of-the-art methods such as additive, interactions-based and other competing non-convex regularized linear regression methods.

Original languageEnglish
Title of host publicationCIKM 2016 - Proceedings of the 2016 ACM Conference on Information and Knowledge Management
Pages1019-1028
Number of pages10
ISBN (Electronic)9781450340731
DOIs
StatePublished - 24 Oct 2016
Event25th ACM International Conference on Information and Knowledge Management, CIKM 2016 - Indianapolis, United States
Duration: 24 Oct 201628 Oct 2016

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
Volume24-28-October-2016

Conference

Conference25th ACM International Conference on Information and Knowledge Management, CIKM 2016
Country/TerritoryUnited States
CityIndianapolis
Period24/10/1628/10/16

Keywords

  • Consensus prediction
  • Regression
  • Regularization

Fingerprint

Dive into the research topics of 'CRISP: Consensus regularized selection based prediction'. Together they form a unique fingerprint.

Cite this