Decentralized Multi-Robot Navigation for Autonomous Surface Vehicles with Distributional Reinforcement Learning

Xi Lin, Yewei Huang, Fanfei Chen, Brendan Englot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Collision avoidance algorithms for Autonomous Surface Vehicles (ASV) that follow the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) have been proposed in recent years. However, it may be difficult and unsafe to follow COLREGs in congested waters, where multiple ASVs are navigating in the presence of static obstacles and strong currents, due to the complex interactions. To address this problem, we propose a decentralized multi-ASV collision avoidance policy based on Distributional Reinforcement Learning, which considers the interactions among ASVs as well as with static obstacles and current flows. We evaluate the performance of the proposed Distributional RL based policy against a traditional RL-based policy and two classical methods, Artificial Potential Fields (APF) and Reciprocal Velocity Obstacles (RVO), in simulation experiments, which show that the proposed policy achieves superior performance in navigation safety, while requiring minimal travel time and energy. A variant of our framework that automatically adapts its risk sensitivity is also demonstrated to improve ASV safety in highly congested environments.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Pages8327-8333
Number of pages7
ISBN (Electronic)9798350384574
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

Fingerprint

Dive into the research topics of 'Decentralized Multi-Robot Navigation for Autonomous Surface Vehicles with Distributional Reinforcement Learning'. Together they form a unique fingerprint.

Cite this