Degradation of 3-nitro-1,2,4-trizole-5-one (NTO) in wastewater with UV/H2O2 oxidation

Amalia Terracciano, Christos Christodoulatos, Agamemnon Koutsospyros, Zhaoyu Zheng, Tsan Liang Su, Benjamin Smolinski, Per Arienti, Xiaoguang Meng

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Insensitive Munition (IM) formulations contain 3-nitro-1,2,4-trizole-5-one (NTO), an energetic compound with the highest aqueous solubility (16 g L−1) among all IM explosives, including 2,4-dinitroanisole (DNAN) and 1-nitroguanidine (NQ); as a result wastewater streams from IM processing facilities can be highly contaminated and potentially toxic. The removal of energetic compounds from wastewater streams prior to their discharge in the environment is imperative, and new technology must be developed to efficiently treat high levels of NTO and other IM compounds in these streams. In this study, the treatment of NTO wastewater by a UV/H2O2 oxidation process under acidic conditions (pH = 3.0 ± 0.1) and a hydrogen peroxide concentration of at least 1500 mg L−1 resulted in successful removal of the energetic compound. The organic carbon from the NTO ring was completely converted to inorganic carbon (CO2), as confirmed through TOC measurements and GC–MS analysis on the reactor headspace. Nitrate and ammonium ions were the major nitrogen by-products, as indicated by mass spectrometry. The results obtained in this work demonstrate that the UV/H2O2 oxidation process can effectively mineralize high concentrations of NTO in wastewater streams leading to recovery of valuable nutrients that can be used for supporting algal biomass growth for biofuel/biogas generation.

Original languageEnglish
Pages (from-to)481-491
Number of pages11
JournalChemical Engineering Journal
Volume354
DOIs
StatePublished - 15 Dec 2018

Keywords

  • MS
  • Mineralization
  • NTO
  • Oxidation
  • UV/HO
  • pH and HO effects

Fingerprint

Dive into the research topics of 'Degradation of 3-nitro-1,2,4-trizole-5-one (NTO) in wastewater with UV/H2O2 oxidation'. Together they form a unique fingerprint.

Cite this