Design and analysis of distributed hopping-based channel access in multi-channel cognitive radio systems with delay constraints

Gongzheng Zhang, Aiping Huang, Hangguan Shan, Jian Wang, Tony Q.S. Quek, Yu Dong Yao

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

To support delay-sensitive traffic in multi-channel cognitive radio systems, designing a channel access scheme faces two major challenges, namely, the long waiting time due to continuous channel occupancy of primary users (PUs) and the performance degradation due to transmission collisions among secondary users (SUs). To address both issues, we propose a two-phase channel access scheme, which consists of a distributed channel negotiation phase and a hopping-based channel access phase for each SU. Specifically, in its first phase, an SU attempts to negotiate a specific initial slot/channel differing from the ones chosen by other SUs. Then, in its second phase, the SU chooses a channel in each time slot in a hopping-based manner to transmit data, where the hopping starts from its initial channel and follows a common hopping sequence. Virtual channels are introduced to accommodate the situation when the number of SUs is larger than that of actual channels. The average maximal waiting time due to the channel negotiation phase is derived, and the effective capacity of the service process for each SU in the channel access phase is analyzed. Numerical results show that the proposed scheme can support a higher traffic load under the statistical delay constraint, as compared with fixed or random channel access schemes.

Original languageEnglish
Article number6985739
Pages (from-to)2026-2038
Number of pages13
JournalIEEE Journal on Selected Areas in Communications
Volume32
Issue number11
DOIs
StatePublished - 1 Nov 2014

Keywords

  • Cognitive radio system
  • channel negotiation
  • effective capacity
  • hopping-based channel access
  • statistical delay constraint

Fingerprint

Dive into the research topics of 'Design and analysis of distributed hopping-based channel access in multi-channel cognitive radio systems with delay constraints'. Together they form a unique fingerprint.

Cite this