Design of Li1+2:XZn1-xPS4, a new lithium ion conductor

William D. Richards, Yan Wang, Lincoln J. Miara, Jae Chul Kim, Gerbrand Ceder

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

Recent theoretical work has uncovered that a body-centered-cubic (bcc) anion arrangement leads to high ionic conductivity in a number of fast lithium-ion conducting materials. Using this structural feature as a screening criterion, we find that the I4 material LiZnPS4 contains such a framework and has the potential for very high ionic conductivity. In this work, we apply ab initio computational techniques to investigate in detail the ionic conductivity and defect properties of this material. We find that while the stoichiometric structure has poor ionic conductivity, engineering of its composition to introduce interstitial lithium defects is able to exploit the low migration barrier of the bcc anion framework. Our calculations predict a solid-solution regime extending to x = 0.5 in Li1+2xZn1-xPS4, and yield a new ionic conductor with exceptionally high lithium-ion conductivity, potentially exceeding 50 mS cm-1 at room temperature.

Original languageEnglish
Pages (from-to)3272-3278
Number of pages7
JournalEnergy and Environmental Science
Volume9
Issue number10
DOIs
StatePublished - Oct 2016

Fingerprint

Dive into the research topics of 'Design of Li1+2:XZn1-xPS4, a new lithium ion conductor'. Together they form a unique fingerprint.

Cite this