Detecting and parsing architecture at city scale from range data

Alexander Toshev, Philippos Mordohai, Ben Taskar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

65 Scopus citations

Abstract

We present a method for detecting and parsing buildings from unorganized 3D point clouds into a compact, hierarchical representation that is useful for high-level tasks. The input is a set of range measurements that cover large-scale urban environment. The desired output is a set of parse trees, such that each tree represents a semantic decomposition of a building - the nodes are roof surfaces as well as volumetric parts inferred from the observable surfaces. We model the above problem using a simple and generic grammar and use an efficient dependency parsing algorithm to generate the desired semantic description. We show how to learn the parameters of this simple grammar in order to produce correct parses of complex structures. We are able to apply our model on large point clouds and parse an entire city.

Original languageEnglish
Title of host publication2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Pages398-405
Number of pages8
DOIs
StatePublished - 2010
Event2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010 - San Francisco, CA, United States
Duration: 13 Jun 201018 Jun 2010

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Country/TerritoryUnited States
CitySan Francisco, CA
Period13/06/1018/06/10

Fingerprint

Dive into the research topics of 'Detecting and parsing architecture at city scale from range data'. Together they form a unique fingerprint.

Cite this