Abstract
It is proved that every linear discriminating (square-like) group is abelian and every finitely generated solvable discriminating group is free abelian. These results follow from manipulations with c-dimensions of groups; the c-dimension of a group G is the length of a longest strictly decreasing chain of centralizers in G.
| Original language | English |
|---|---|
| Pages (from-to) | 135-142 |
| Number of pages | 8 |
| Journal | Journal of Group Theory |
| Volume | 7 |
| Issue number | 1 |
| State | Published - 2004 |