Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation

L. Capolungo, D. E. Spearot, M. Cherkaoui, D. L. McDowell, J. Qu, K. I. Jacob

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Molecular dynamics simulations are used to evaluate the primary interface dislocation sources and to estimate both the free enthalpy of activation and the critical emission stress associated with the interfacial dislocation emission mechanism. Simulations are performed on copper to study tensile failure of a planar Σ5 {2 1 0} 53.1° interface and an interface with the same misorientation that contains a ledge. Simulations reveal that grain boundary ledges are more favorable as dislocation sources than planar regions of the interface and that their role is not limited to that of simple dislocation donors. The parameters extracted from the simulations are utilized in a two-phase composite mesoscopic model for nanocrystalline deformation that includes the effects of both dislocation emission and dislocation absorption mechanisms. A self-consistent approach based on the Eshelby solution for grains as ellipsoidal inclusions is augmented by introduction of stress concentration in the constitutive law of the matrix phase to account for more realistic grain boundary effects. Model simulations suggest that stress concentration is required in the standard continuum theory to activate the coupled grain boundary dislocation emission and absorption mechanisms when activation energy of the dislocation source is determined from atomistic calculation on grain boundaries without consideration of impurities or other extrinsic defects.

Original languageEnglish
Pages (from-to)2300-2327
Number of pages28
JournalJournal of the Mechanics and Physics of Solids
Volume55
Issue number11
DOIs
StatePublished - Nov 2007

Keywords

  • Dislocations
  • Micromechanics
  • Molecular dynamics
  • Nanocrystalline materials
  • Thermal activation

Fingerprint

Dive into the research topics of 'Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation'. Together they form a unique fingerprint.

Cite this