Dynamic Fractal Texture Analysis for PolSAR Land Cover Classification

Rui Yang, Xin Xu, Zhaozhuo Xu, Hao Dong, Rong Gui, Fangling Pu

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Polarimetric response is strongly target orientation dependent. The observed polarimetric matrices from the same target with different orientations can be quite different. The existence of target scattering orientation diversity contains rich information, and leveraging information of target scattering orientation diversity may help to reveal polarimetric properties of different land cover types. In this work, a robust land cover feature descriptor, dynamic fractal texture, is introduced to capture the stochastic self-similarities of land cover scattering responses in both spatial and rotation domains. We extend the polarimetric matrix to the rotation domain by polarimetric basis transformation. Varying polarization orientation angle (POA) or ellipticity angle (EA), polarimetric responses of land cover under a series of orientations can be obtained. Then, the dynamic fractal texture is formulated by serializing received responses as a polarimetric synthetic-aperture radar (PolSAR) image sequence. Finally, the proposed features are combined with random forest (RF)/support vector machine (SVM) classifier to produce the classification maps on real PolSAR data. Experiment results show that dynamic fractal texture has an advantage in indicating rotation domain information. The proposed method has superior performance in land cover classification and yields accurate classification results.

Original languageEnglish
Article number8681159
Pages (from-to)5991-6002
Number of pages12
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume57
Issue number8
DOIs
StatePublished - Aug 2019

Keywords

  • Dynamic fractal texture
  • land cover classification
  • polarimetric basis transformation
  • polarimetric synthetic-aperture radar (PolSAR)

Fingerprint

Dive into the research topics of 'Dynamic Fractal Texture Analysis for PolSAR Land Cover Classification'. Together they form a unique fingerprint.

Cite this