Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation

A. Abdelkefi, A. H. Nayfeh, M. R. Hajj

Research output: Contribution to journalArticlepeer-review

91 Scopus citations

Abstract

A nonlinear analysis of an energy harvester consisting of a multilayered cantilever beam with a tip mass is performed. The model takes into account geometric, inertia, and piezoelectric nonlinearities. A combination of the Galerkin technique, the extended Hamilton principle, and the Gauss law is used to derive a reduced-order model of the harvester. The method of multiple scales is used to determine analytical expressions for the tip deflection, output voltage, and harvested power near the first global natural frequency. The results show that one- or two-mode approximations are not sufficient to produce accurate estimates of the voltage and harvested power. A parametric study is performed to investigate the effects of the nonlinear piezoelectric coefficients and the excitation amplitude on the system response. The effective nonlinearity may be of the hardening or softening type, depending on the relative magnitudes of the different nonlinearities.

Original languageEnglish
Pages (from-to)1221-1232
Number of pages12
JournalNonlinear Dynamics
Volume67
Issue number2
DOIs
StatePublished - Jan 2012

Keywords

  • Energy harvesting
  • Method of multiple scales
  • Nonlinear analysis
  • Nonlinear distributed parameter model
  • Piezoelectric material

Fingerprint

Dive into the research topics of 'Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation'. Together they form a unique fingerprint.

Cite this