Effects of structural topography on nanofluids droplet evaporation on multifarious superhydrophobic surfaces

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In this paper, we experimentally studied the evaporation kinetics and wetting dynamics of nanofluid sessile droplets on microstructured superhydrophobic surfaces of a constant air fraction but different structural topographies including arrays of pillars, lines, and wells. The dissimilar superhydrophobic surface patterns were fabricated on a silicon substrate by photolithography and deep reactive ion etching (DRIE) followed by Teflon coating. The 0.01wt% suspensions of gold (Au) nanoparticles of 250 nm in diameter were tested as nanofluids. The change of contact angle, base diameter, height, volume, and evaporation rate of the evaporating nanofluid droplet was measured in a room condition by using a goniometer. The results show that the change of structural topographies, despite the same air fraction on the surface, make significant difference in the droplet profile evolution during sequential evaporation phases. Compared to pure water tested as control, the distinctive influence of nanoparticles was especially observed in the final pinning phase with the tested nanofluid condition. This paper demonstrates that the evaporation kinetics and wetting dynamics of liquid droplets are significantly affected by the structural topography and the presences of nanoparticulates, which should be considered in the design and applications of superhydrophobic surfaces for droplet-based heat and mass transfer systems.

Original languageEnglish
Title of host publicationProceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009
Pages497-505
Number of pages9
DOIs
StatePublished - 2010
EventASME 2009 Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009 - Shanghai, China
Duration: 18 Dec 200921 Dec 2009

Publication series

NameProceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009
Volume1

Conference

ConferenceASME 2009 Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009
Country/TerritoryChina
CityShanghai
Period18/12/0921/12/09

Keywords

  • Evaporation
  • Nanofluids
  • Superhydrophobic surface

Fingerprint

Dive into the research topics of 'Effects of structural topography on nanofluids droplet evaporation on multifarious superhydrophobic surfaces'. Together they form a unique fingerprint.

Cite this