TY - GEN
T1 - Efficient nonlinear vibration analysis of the forced response of rotating cracked blades
AU - Saito, Akira
AU - Castanier, Matthew P.
AU - Pierre, Christophe
PY - 2006
Y1 - 2006
N2 - The efficient nonlinear vibration analysis of a rotating elastic structure with a crack is examined. In particular, the solution of the forced vibration response of a cracked turbine engine blade is investigated. Starting with a finite element model of the cracked system, the Craig-Bampton method of component mode synthesis is used to generate a reduced-order model that retains the nodes of the crack surfaces as physical DOF. The nonlinearity due to the intermittent contact of the crack surfaces, which is caused by the opening and closing of the crack during each vibration cycle, is modeled with a piecewise linear term in the equations of motion. Then, the efficient solution procedure for solving the resulting nonlinear equations of motion is presented. The approach employed in this study is a multi-harmonic, hybrid frequency/time- domain (HFT) technique, which is an extension of the traditional harmonic balance method. First, a simple beam model is used to perform a numerical validation by comparing the results of the new method to those from transient finite element analysis (FEA) with contact elements. It is found that the new method retains good accuracy relative to FEA while reducing the computational costs by several orders of magnitude. Second, a representative blade model is used to examine the effects of crack length and rotation speed on the resonant frequency response. Several issues related to the rotation are investigated, including geometry changes of the crack and the existence of multiple solutions.
AB - The efficient nonlinear vibration analysis of a rotating elastic structure with a crack is examined. In particular, the solution of the forced vibration response of a cracked turbine engine blade is investigated. Starting with a finite element model of the cracked system, the Craig-Bampton method of component mode synthesis is used to generate a reduced-order model that retains the nodes of the crack surfaces as physical DOF. The nonlinearity due to the intermittent contact of the crack surfaces, which is caused by the opening and closing of the crack during each vibration cycle, is modeled with a piecewise linear term in the equations of motion. Then, the efficient solution procedure for solving the resulting nonlinear equations of motion is presented. The approach employed in this study is a multi-harmonic, hybrid frequency/time- domain (HFT) technique, which is an extension of the traditional harmonic balance method. First, a simple beam model is used to perform a numerical validation by comparing the results of the new method to those from transient finite element analysis (FEA) with contact elements. It is found that the new method retains good accuracy relative to FEA while reducing the computational costs by several orders of magnitude. Second, a representative blade model is used to examine the effects of crack length and rotation speed on the resonant frequency response. Several issues related to the rotation are investigated, including geometry changes of the crack and the existence of multiple solutions.
UR - http://www.scopus.com/inward/record.url?scp=85196501054&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196501054&partnerID=8YFLogxK
U2 - 10.1115/IMECE2006-15426
DO - 10.1115/IMECE2006-15426
M3 - Conference contribution
AN - SCOPUS:85196501054
SN - 0791837904
SN - 9780791837900
T3 - American Society of Mechanical Engineers, Applied Mechanics Division, AMD
BT - Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Applied Mechanics Division
T2 - 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Y2 - 5 November 2006 through 10 November 2006
ER -