Electron transport and recombination in TiO2 nanofiber dye sensitized solar cell

Jinwei Li, Yong Shi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Dye sensitized solar cells (DSSCs), a new type of photo-electrochemical solar cells, are a promising alternative to the silicon based photovoltaic because they hold advantages of low cost, simple manufacturing processes and higher conversion efficiency compared with other types of excitonic solar cell. DSSCs with conversion efficiencies of up to 11% have been achieved with a highly stable electrolyte under AM1.5G conditions. Recently, one dimensional (1D) electrospun TiO2 nanofibers have been used as the DSSC photoanode to improve the electron transport efficiency and enhance the light harvest efficiency by scattering more light in the red part of the solar spectrum. In this paper, stepped light induced transient measurement of photocurrent and voltage (SLIM-PCV) has been employed to study electron transport and recombination in DSSCs. Electron diffusion coefficients and electron lifetimes were measured with differing light intensities. The electron diffusion coefficients and electron lifetimes strong correlate with intensity, which indicates the trap limited diffusion process for electrons in the TiO 2 nanofiber DSSC.

Original languageEnglish
Title of host publicationNano and Micro Materials, Devices and Systems; Microsystems Integration
Pages361-363
Number of pages3
DOIs
StatePublished - 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: 11 Nov 201117 Nov 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Volume11

Conference

ConferenceASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Country/TerritoryUnited States
CityDenver, CO
Period11/11/1117/11/11

Fingerprint

Dive into the research topics of 'Electron transport and recombination in TiO2 nanofiber dye sensitized solar cell'. Together they form a unique fingerprint.

Cite this