Abstract
The efficient response to a disaster plays an important role in decreasing its impact on affected victims. In some cases, the high volume of potential casualties as well as the urgency of a fast response increase the complexity of the disaster response mission. Such cases have created a need for developing an effective and efficient disaster response strategy. This paper focuses on developing a multi-objective optimization model and an evolutionary algorithm as a first step to generate optimal emergency medical response strategies characterized by the selection of: (1) locations of temporary emergency units, (2) dispatching strategies of emergency vehicles to evacuate injured victims to the temporary emergency units, and (3) number of victims to evacuate to each unit. The objectives of the optimization model are to minimize response time and cost of the response strategy. The evolutionary algorithm is used to solve the model and find a set of Pareto optimal solutions where each solution represents a different emergency medical response strategy. This approach can help decision-makers to evaluate the trade-offs among different strategies. Three experiments are provided to discuss the model.
Original language | English |
---|---|
DOIs | |
State | Published - 2014 |
Event | 12th International Probabilistic Safety Assessment and Management Conference, PSAM 2014 - Honolulu, United States Duration: 22 Jun 2014 → 27 Jun 2014 |
Conference
Conference | 12th International Probabilistic Safety Assessment and Management Conference, PSAM 2014 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 22/06/14 → 27/06/14 |
Keywords
- Disaster response
- Emergency logistics
- Evolutionary algorithm
- Multi-objective optimization
- Resource allocation