Abstract
Previous functional studies have proposed that solution-phase loading of human insulin A-chain peptides into cell surface Class II molecules may be limited by the redox state of intrinsic cysteine residues within the A-chain peptide. T cell functional studies of a human insulin A-chain analogue (KR A1 - 15) comprised of residues 1 - 15 of the A-chain peptide as well as an amino-terminal lysine-arginine extension have been carried out in a reducing environment. These data suggest that free thiol moieties within this peptide may participate in major histocompatibility complex (MHC) II/peptide interactions. Two-dimensional1H NMR spectroscopy data partnered with quantum chemical calculations identified that KR A1 - 15 exists in conformational flux sampling heterogeneous redox-dependent conformations including: one reduced and two oxidized states. These findings were further supported by mass spectrometry analysis of this peptide that confirmed the presence of a redox state dependent conformational equilibrium. Interestingly, the presence of a free thiol ( 1Hγ) resonance for cysteine 8 in the oxidized state supports the existence of the third redox-dependent conformation represented as a mixed disulfide conformation. We believe these data support the presence of a redox-dependent mechanism for regulating the activity of human insulin and provide a better understanding of redox chemistry that may be extended to other protein systems.
Original language | English |
---|---|
Pages (from-to) | 585-591 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry B |
Volume | 114 |
Issue number | 1 |
DOIs | |
State | Published - 14 Jan 2010 |