Event-Driven Receding Horizon Control for Distributed Persistent Monitoring on Graphs

Shirantha Welikala, Christos G. Cassandras

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the optimal multi-agent persistent monitoring problem defined on a set of nodes (targets) inter-connected through a fixed graph topology. The objective is to minimize a measure of mean overall node state uncertainty evaluated over a finite time interval by controlling the motion of a team of agents. Prior work has addressed this problem through on-line parametric controllers and gradient-based methods, often leading to low-performing local optima or through off-line computationally intensive centralized approaches. This paper proposes a computationally efficient event-driven receding horizon control approach providing a distributed on-line gradient-free solution to the persistent monitoring problem. A novel element in the controller, which also makes it parameter-free, is that it self-optimizes the planning horizon over which control actions are sequentially taken in event-driven fashion. Numerical results show significant improvements compared to state of the art distributed on-line parametric control solutions.

Original languageEnglish
Title of host publication2020 59th IEEE Conference on Decision and Control, CDC 2020
Pages92-97
Number of pages6
ISBN (Electronic)9781728174471
DOIs
StatePublished - 14 Dec 2020
Event59th IEEE Conference on Decision and Control, CDC 2020 - Virtual, Jeju Island, Korea, Republic of
Duration: 14 Dec 202018 Dec 2020

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2020-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference59th IEEE Conference on Decision and Control, CDC 2020
Country/TerritoryKorea, Republic of
CityVirtual, Jeju Island
Period14/12/2018/12/20

Fingerprint

Dive into the research topics of 'Event-Driven Receding Horizon Control for Distributed Persistent Monitoring on Graphs'. Together they form a unique fingerprint.

Cite this