TY - JOUR
T1 - Experimental and numerical investigation of fracture conductivity between non-smooth rock surfaces with and without proppant
AU - Li, Zihao
AU - Guo, Ruichang
AU - Wang, Hongsheng
AU - Teng, Yuntian
AU - Ripepi, Nino
AU - Fernandez, Carlos A.
AU - Chen, Cheng
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/3
Y1 - 2025/3
N2 - The enhancement of fracture conductivity is vital for the efficient recovery of subsurface resources, such as geothermal energy and petroleum hydrocarbons. Proppants, granular materials injected into hydraulic fractures to maintain their conductivity, have been studied primarily in the context of smooth fractures (i.e., fractures between smooth rock surfaces). However, non-smooth fractures (i.e., fractures between rough rock surfaces) are common in geoenergy reservoirs and thus require further investigations. In this study, we conducted laboratory measurements of fracture conductivity on shale slabs with non-smooth surfaces and carried out numerical simulation using the lattice Boltzmann (LB) method, which aimed to investigate the conductivity of non-smooth fractures with and without proppants placement. When ceramic proppant with an areal concentration of 2 lb/ft2 was placed in the fracture, the conductivity was enhanced by roughly 3 to 8 times compared to fractures without proppant. In fractures with proppant, gas-measured conductivity was higher than that measured with water due to proppant embedment caused by water. The experiments demonstrate the advantages of using proppant in fractures, even if the rock surface roughness can provide certain fracture conductivity via the self-propping mechanism. For fractures without proppants, high rock surface roughness is not necessarily favorable for enhancing fracture conductivity because the self-propping mechanism requires shear slip along the fracture surface. If there is no shear slip, high rock surface roughness can cause a detrimental effect on the fracture conductivity due to the interlocking effect. Utilizing advanced experimental equipment and LB modeling, this research explores the interplays between proppant placement, fracture geometry, and stress conditions to develop a comprehensive understanding of the productivity in non-smooth fractures. The outcomes of this investigation indicate the importance of creating fractures with surface roughness during hydraulic fracturing and will contribute to the development of more efficient stimulation techniques for subsurface energy extraction.
AB - The enhancement of fracture conductivity is vital for the efficient recovery of subsurface resources, such as geothermal energy and petroleum hydrocarbons. Proppants, granular materials injected into hydraulic fractures to maintain their conductivity, have been studied primarily in the context of smooth fractures (i.e., fractures between smooth rock surfaces). However, non-smooth fractures (i.e., fractures between rough rock surfaces) are common in geoenergy reservoirs and thus require further investigations. In this study, we conducted laboratory measurements of fracture conductivity on shale slabs with non-smooth surfaces and carried out numerical simulation using the lattice Boltzmann (LB) method, which aimed to investigate the conductivity of non-smooth fractures with and without proppants placement. When ceramic proppant with an areal concentration of 2 lb/ft2 was placed in the fracture, the conductivity was enhanced by roughly 3 to 8 times compared to fractures without proppant. In fractures with proppant, gas-measured conductivity was higher than that measured with water due to proppant embedment caused by water. The experiments demonstrate the advantages of using proppant in fractures, even if the rock surface roughness can provide certain fracture conductivity via the self-propping mechanism. For fractures without proppants, high rock surface roughness is not necessarily favorable for enhancing fracture conductivity because the self-propping mechanism requires shear slip along the fracture surface. If there is no shear slip, high rock surface roughness can cause a detrimental effect on the fracture conductivity due to the interlocking effect. Utilizing advanced experimental equipment and LB modeling, this research explores the interplays between proppant placement, fracture geometry, and stress conditions to develop a comprehensive understanding of the productivity in non-smooth fractures. The outcomes of this investigation indicate the importance of creating fractures with surface roughness during hydraulic fracturing and will contribute to the development of more efficient stimulation techniques for subsurface energy extraction.
KW - Fracture conductivity
KW - Hydraulic fracturing
KW - Lattice Boltzmann
KW - Non-smooth surface
KW - Proppant
UR - http://www.scopus.com/inward/record.url?scp=85210675798&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85210675798&partnerID=8YFLogxK
U2 - 10.1016/j.geoen.2024.213582
DO - 10.1016/j.geoen.2024.213582
M3 - Article
AN - SCOPUS:85210675798
SN - 0920-4105
VL - 246
JO - Geoenergy Science and Engineering
JF - Geoenergy Science and Engineering
M1 - 213582
ER -