Exploiting user demand diversity in heterogeneous wireless networks

Zhiyong Du, Qihui Wu, Panlong Yang, Yuhua Xu, Jinlong Wang, Yu Dong Yao

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Radio resource management (RRM) is crucial for improving resource utilization in heterogeneous wireless networks. Existing work attempts to exploit the network diversity to gain throughput improvement for users, which, however, neglects the impact of user demand on RRM. Armed with the idea that the ultimate goal of communications is to serve users with personalized demand, we introduce another dimension of potential performance gain, user demand diversity gain. This gain derives from the elaborate matching between user demand and radio resource, which can not be directly attained in existing throughput-centric optimization due to users' blindness in maximizing throughput. Aiming at obtaining this gain, we propose the user demand-centric optimization, where users seek to maximize quality of experience (QoE), instead of throughput. This shift enables us to propose a novel game formulation, QoE game. We derive the condition on the existence of the QoE equilibrium, validate the user demand diversity gain and propose a distributed QoE equilibrium learning algorithm. Finally, a cloud assisted learning framework is proposed to accommodate the learning algorithm with significantly reduced cost. Simulation results validate the existence of user demand diversity gain and the effectiveness of the proposed learning algorithm in improving the system efficiency and QoE fairness.

Original languageEnglish
Article number7069252
Pages (from-to)4142-4155
Number of pages14
JournalIEEE Transactions on Wireless Communications
Volume14
Issue number8
DOIs
StatePublished - 1 Aug 2015

Keywords

  • Heterogeneous wireless network
  • QoE game
  • radio resource management
  • user demand diversity

Fingerprint

Dive into the research topics of 'Exploiting user demand diversity in heterogeneous wireless networks'. Together they form a unique fingerprint.

Cite this