Exploration of spherical torus physics in the NSTX device

M. Ono, S. M. Kaye, Y. K.M. Peng, G. Barnes, W. Blanchard, M. D. Carter, J. Chrzanowski, L. Dudek, R. Ewig, D. Gates, R. E. Hatcher, T. Jarboe, S. C. Jardin, D. Johnson, R. Kaita, M. Kalish, C. E. Kessel, H. W. Kugel, R. Maingi, R. MajeskiJ. Manickam, B. McCormack, J. Menard, D. Mueller, B. A. Nelson, B. E. Nelson, C. Neumeyer, G. Oliaro, F. Paoletti, R. Parsells, E. Perry, N. Pomphrey, S. Ramakrishnan, R. Raman, G. Rewoldt, J. Robinson, A. L. Roquemore, P. Ryan, S. Sabbagh, D. Swain, E. J. Synakowski, M. Viola, M. Williams, J. R. Wilson

Research output: Contribution to journalArticlepeer-review

372 Scopus citations

Abstract

The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a ≥1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ≤2.2, triangularity δ≤0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

Original languageEnglish
Pages (from-to)557-561
Number of pages5
JournalNuclear Fusion
Volume40
Issue numberSPEC. ISS. 3
DOIs
StatePublished - 2000

Fingerprint

Dive into the research topics of 'Exploration of spherical torus physics in the NSTX device'. Together they form a unique fingerprint.

Cite this