Fast thermal analysis on GPU for 3D-ICs with integrated microchannel cooling

Zhuo Feng, Peng Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Scopus citations

Abstract

While effective thermal management for 3D-ICs is becoming increasingly challenging due to the ever increasing power density and chip design complexity, traditional heat sinks are expected to quickly reach their limits for meeting the cooling needs of 3D-ICs. Alternatively, integrated liquid-cooled microchannel heat sink becomes one of the most effective solutions. For the first time, we present fast GPU-based thermal simulation methods for 3D-ICs with integrated microchannel cooling. Based on the physical heat dissipation paths of 3D-ICs with integrated microchannels, we propose novel preconditioned iterative methods that can be efficiently accelerated on GPU's massively parallel computing platforms. Unlike the CPU-based solver development environment in which many existing sophisticated numerical simulation methods (matrix solvers) can be readily adopted and implemented, GPU-based thermal simulation demands more efforts in the algorithm and data structure design phase, and requires careful consideration of GPU's thread/memory organizations, data access/communication patterns, arithmetic intensity, as well as the hardware occupancies. As shown in various experimental results, our GPU-based 3D thermal simulation solvers can achieve up to 360X speedups over the best available direct solvers and more than 35X speedups compared with the CPU-based iterative solvers, without loss of accuracy.

Original languageEnglish
Title of host publication2010 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2010
Pages551-555
Number of pages5
DOIs
StatePublished - 2010
Event2010 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2010 - San Jose, United States
Duration: 7 Nov 201011 Nov 2010

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
ISSN (Print)1092-3152

Conference

Conference2010 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2010
Country/TerritoryUnited States
CitySan Jose
Period7/11/1011/11/10

Fingerprint

Dive into the research topics of 'Fast thermal analysis on GPU for 3D-ICs with integrated microchannel cooling'. Together they form a unique fingerprint.

Cite this