Fetal Movement Cancellation in Abdominal Electrocardiogram Recordings Using Signal-to-Signal Translation

Arash Shokouhmand, Negar Tavassolian

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This study addresses the cancellation of fetal movement in abdominal electrocardiogram (AECG) recordings through deep neural networks. For this purpose, a generative signal-to-signal translation model consisting of two coupled generators is employed to discover the relations between fetal movement-contaminated and clean AECG recordings. The model is trained on the fetal ECG synthetic database (FECGSYNDB) which provides AECG recordings from 10 pregnancies along with their ground-truth maternal and fetal ECG signals. The signals are initially segmented into 4-second segments and then fed into the network for denoising. It is demonstrated that the signal-to-signal translation method can reconstruct clean AECG signals with average mean-absolute-error (MAE), root-mean-square deviation (RMSD), and Pearson correlation coefficient (PCC) of 0.099, 0.124, and 99.12% respectively, between clean and denoised AECG signals. Furthermore, the robustness of the method to low signal-to-noise ratio (SNR) input values is shown by an RMSD range of (0.047, 0.352) for SNR values within the range of (-3, 3) dB. Clinical Relevance- The proposed framework allows for the denoising of abdominal ECG signals for non-invasive fetal heart rate monitoring.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Pages2017-2020
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: 11 Jul 202215 Jul 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period11/07/2215/07/22

Fingerprint

Dive into the research topics of 'Fetal Movement Cancellation in Abdominal Electrocardiogram Recordings Using Signal-to-Signal Translation'. Together they form a unique fingerprint.

Cite this