FMAC: A fair MAC protocol for coexisting cognitive radio networks

Yanxiao Zhao, Min Song, Chunsheng Xin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

30 Scopus citations

Abstract

Cognitive radio is viewed as a disruptive technology innovation to improve spectrum efficiency. The deployment of coexisting cognitive radio networks, however, raises a great challenge to the medium access control (MAC) protocol design. While there have been many MAC protocols developed for cognitive radio networks, most of them have not considered the coexistence of cognitive radio networks, and thus do not provide a mechanism to ensure fair and efficient coexistence of cognitive radio networks. In this paper, we introduce a novel MAC protocol, termed fairness-oriented media access control (FMAC), to address the dynamic availability of channels and achieve fair and efficient coexistence of cognitive radio networks. Different from the existing MACs, FMAC utilizes a three-state spectrum sensing model to distinguish whether a busy channel is being used by a primary user or a secondary user from an adjacent cognitive radio network. As a result, secondary users from coexisting cognitive radio networks are able to share the channel together, and hence to achieve fair and efficient coexistence. We develop an analytical model using two-level Markov chain to analyze the performance of FMAC including throughput and fairness. Numerical results verify that FMAC is able to significantly improve the fairness of coexisting cognitive radio networks while maintaining a high throughput.

Original languageEnglish
Title of host publication2013 Proceedings IEEE INFOCOM 2013
Pages1474-1482
Number of pages9
DOIs
StatePublished - 2013
Event32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013 - Turin, Italy
Duration: 14 Apr 201319 Apr 2013

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X

Conference

Conference32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013
Country/TerritoryItaly
CityTurin
Period14/04/1319/04/13

Fingerprint

Dive into the research topics of 'FMAC: A fair MAC protocol for coexisting cognitive radio networks'. Together they form a unique fingerprint.

Cite this