Formation of aluminum nanoparticles upon condensation from vapor phase for energetic applications

R. Schefflan, S. Kovenklioglu, D. Kalyon, M. Mezger, M. Leng

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

A mathematical model of the nanoparticles formation process from deposition from the vapor phase process was developed and applied to the manufacture of alumina-coated aluminum nanoparticles. This process involves conversion of gaseous aluminum in the presence of helium carrier gas to solid aluminum nanoparticles. These activities effectively prepare the aluminum for reaction with oxygen gas to create an alumina coating in the remainder of the process. The basis of the calculations is the General Dynamic Equation for aerosols, which was formulated as an explicit numerical equation. The equation is solved over a user specified surface with particle volume (equivalent to particle diameter) and reactor holding time as the independent variables. The solution produces the number distribution function of the nanoparticles over the solution space. After all of the gaseous aluminum has solidified, a moment equation is employed to calculate the number of particles in each of the size distribution ranges. The mathematical model is useful to study the trends on the dependence of the nanoparticle size distribution on the operating parameters such as pressure and temperature profile in the reactor. A number of case studies are included to demonstrate the utility of the mathematical model.

Original languageEnglish
Pages (from-to)141-156
Number of pages16
JournalJournal of Energetic Materials
Volume24
Issue number2
DOIs
StatePublished - 1 Jul 2006

Keywords

  • Aluminum nanoparticles
  • General Dynamic Equation
  • Vapor phase process

Fingerprint

Dive into the research topics of 'Formation of aluminum nanoparticles upon condensation from vapor phase for energetic applications'. Together they form a unique fingerprint.

Cite this