Full 3d rotor/stator interaction simulations in aircraft engines with time-dependent angular speed

Alain Batailly, Mathias Legrand, Christophe Pierre

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Modern aircraft engine designs feature reduced clearances that may initiate structural contacts between rotating and static components. A numerical strategy dedicated to the simulation of such interactions is here enriched in order to account for time-dependent angular speeds. This contribution first details the evolution of the numerical strategy before validating the developments by comparing numerical results with experimental observations made on an industrial test bench. Further numerical investigations allow to assess the sensitivity of numerical results to acceleration and deceleration rates. Results, obtained with and without abradable coating, underline the fundamental nonlinear nature of the analysed system. It is found that lower acceleration rates favour the arisal of interaction phenomena and that amplitudes of vibration at a given angular speed are generally lower when the blade decelerates.

Original languageEnglish
Title of host publicationStructures and Dynamics
ISBN (Electronic)9780791849835
DOIs
StatePublished - 2016
EventASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016 - Seoul, Korea, Republic of
Duration: 13 Jun 201617 Jun 2016

Publication series

NameProceedings of the ASME Turbo Expo
Volume7A-2016

Conference

ConferenceASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016
Country/TerritoryKorea, Republic of
CitySeoul
Period13/06/1617/06/16

Fingerprint

Dive into the research topics of 'Full 3d rotor/stator interaction simulations in aircraft engines with time-dependent angular speed'. Together they form a unique fingerprint.

Cite this