Ground-truth or DAER: Selective Re-query of Secondary Information

Stephan J. Lemmer, Jason J. Corso

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Many vision tasks use secondary information at inference time-a seed-to assist a computer vision model in solving a problem. For example, an initial bounding box is needed to initialize visual object tracking. To date, all such work makes the assumption that the seed is a good one. However, in practice, from crowdsourcing to noisy automated seeds, this is often not the case. We hence propose the problem of seed rejection-determining whether to reject a seed based on the expected performance degradation when it is provided in place of a gold-standard seed. We provide a formal definition to this problem, and focus on two meaningful subgoals: understanding causes of error and understanding the model's response to noisy seeds conditioned on the primary input. With these goals in mind, we propose a novel training method and evaluation metrics for the seed rejection problem. We then use seeded versions of the viewpoint estimation and fine-grained classification tasks to evaluate these contributions. In these experiments, we show our method can reduce the number of seeds that need to be reviewed for a target performance by over 23% compared to strong baselines.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
Pages683-694
Number of pages12
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'Ground-truth or DAER: Selective Re-query of Secondary Information'. Together they form a unique fingerprint.

Cite this